Central extensions of restricted Lie superalgebras and classification of *p*-nilpotent Lie superalgebras in dimension 4

Quentin Ehret

VII International Workshop on Non-Associative Algebras

Lecce, 2024

Joint work with Sofiane Bouarroudj

جامعة نيويورك أبوظي

Let \mathbb{K} be a field of characteristic p > 2, algebraically closed.

• Our goals:

- \blacktriangleright classification of low-dimensional *p-nilpotent restricted* Lie superalgebras over $\mathbb{K}.$
- superization of formulas for the restricted cohomology.

Let \mathbb{K} be a field of characteristic p > 2, algebraically closed.

- Our goals:
 - ▶ classification of low-dimensional *p-nilpotent restricted* Lie superalgebras over \mathbb{K} .
 - superization of formulas for the restricted cohomology.
- Our tool: restricted central extensions:

Let \mathbb{K} be a field of characteristic p > 2, algebraically closed.

Our goals:

- ▶ classification of low-dimensional *p-nilpotent restricted* Lie superalgebras over \mathbb{K} .
- superization of formulas for the restricted cohomology.
- Our tool: restricted central extensions:

Proposition

Let L be a p-nilpotent restricted Lie superalgebra of dimension n. Then, L is isomorphic to a central extension by a restricted 2-cocycle of a p-nilpotent restricted Lie superalgebra of dimension n-1.

Let \mathbb{K} be a field of characteristic p > 2, algebraically closed.

- Our goals:
 - classification of low-dimensional *p-nilpotent restricted* Lie superalgebras over \mathbb{K} .
 - superization of formulas for the restricted cohomology.
- Our tool: restricted central extensions:

Proposition

Let L be a p-nilpotent restricted Lie superalgebra of dimension n. Then, L is isomorphic to a central extension by a restricted 2-cocycle of a p-nilpotent restricted Lie superalgebra of dimension n-1.

• What do we need? Restricted 2-cocycles of the restricted cohomology for restricted Lie superalgebras.

- Introduction
- 2 Preliminaries
- 3 Restricted cohomology and central extensions
 - A (very) brief history of restricted cohomology
 - Restricted cohomology for restricted Lie superalgebras
 - Central extensions of restricted Lie superalgebras
- 4 Classification of low dimensional restricted Lie superalgebras
 - A brief history of classification of restricted Lie algebras
 - Dimension 3
 - Dimension 4

Restricted Lie algebras

Definition (Jacobson)

A restricted Lie algebra is a Lie algebra L equipped with a map $(\cdot)^{[p]}: L \longrightarrow L$ satisfying for all $x, y \in L$ and for all $\lambda \in \mathbb{K}$:

- $[x, y^{[p]}] = [[\cdots [x, y], y], \cdots, y];$
- $(x+y)^{[p]} = x^{[p]} + y^{[p]} + \sum_{i=1}^{p-1} s_i(x,y),$

Nathan Jacobson (1910-1999)

with $is_i(x,y)$ the coefficient of Z^{i-1} in $ad_{Zx+y}^{p-1}(x)$. Such a map $(-)^{[p]}:L\longrightarrow L$ is called p-map.

Example: any associative algebra A with [a, b] = ab - ba and $a^{[p]} = a^p$, $\forall a, b \in A$.

Restricted Lie algebras

Definition

A Lie algebra morphism $f: (L, [\cdot, \cdot], (\cdot)^{[p]}) \to (L', [\cdot, \cdot]', (\cdot)^{[p]'})$ is called **restricted** if

$$f(x^{[p]})=f(x)^{[p]'}, \ \forall x \in L.$$

A L-module M is called restricted if

$$x^{[p]} \cdot m = \left(\overbrace{x \cdot (x \cdots (x \cdot m) \cdots)} \right), \ \forall x \in L, \ \forall m \in M.$$

Restricted Lie superalgebras

Definition (Restricted Lie superalgebra)

A restricted Lie superalgebra is a Lie superalgebra $L = L_{\bar{0}} \oplus L_{\bar{1}}$ such that

- The even part $L_{\bar{0}}$ is a restricted Lie algebra;
- ② The odd part $L_{\bar{1}}$ is a Lie $L_{\bar{0}}$ -module;

$$[x, y^{[p]}] = [[...[x, y], y], ..., y], \ \forall x \in L_{\bar{1}}, \ y \in L_{\bar{0}}.$$

Restricted Lie superalgebras

Definition (Restricted Lie superalgebra)

A restricted Lie superalgebra is a Lie superalgebra $L = L_{\bar{0}} \oplus L_{\bar{1}}$ such that

- The even part $L_{\bar{0}}$ is a restricted Lie algebra;
- ② The odd part $L_{\bar{1}}$ is a Lie $L_{\bar{0}}$ -module;

We can define a map $(\cdot)^{[2p]}:L_{ar{1}} o L_{ar{0}}$ by

$$x^{[2p]} = (x^2)^{[p]}$$
, with $x^2 = \frac{1}{2}[x, x]$, $x \in L_{\bar{1}}$.

Restricted Lie superalgebras

Definition (Restricted Lie superalgebra)

A restricted Lie superalgebra is a Lie superalgebra $L = L_{\bar{0}} \oplus L_{\bar{1}}$ such that

- The even part $L_{\bar{0}}$ is a restricted Lie algebra;
- ② The odd part $L_{\bar{1}}$ is a Lie $L_{\bar{0}}$ -module;

We can define a map $(\cdot)^{[2p]}:L_{\bar{1}} o L_{\bar{0}}$ by

$$x^{[2p]} = (x^2)^{[p]}$$
, with $x^2 = \frac{1}{2}[x, x]$, $x \in L_{\bar{1}}$.

Theorem (Jacobson)

Let $(e_j)_{j\in J}$ be a basis of $L_{\bar 0}$, and let the elements $f_j\in L_{\bar 0}$ be such that $(\operatorname{ad}_{e_j})^p=\operatorname{ad}_{f_j}$. Then, there exists exactly one p|2p-mapping $(\cdot)^{[p|2p]}:L\to L$ such that

$$e_j^{[p]} = f_j$$
 for all $j \in J$.

A (very) brief history of restricted cohomology

• 1955 (Hochschild): $H^n_*(L, M) := \operatorname{Ext}^n_{U_p(L)}(\mathbb{F}, M)$.

Gerhard Hochschild

A (very) brief history of restricted cohomology

• 1955 (Hochschild): $H_*^n(L, M) := \operatorname{Ext}_{U_n(L)}^n(\mathbb{F}, M)$.

Gerhard Hochschild

 2000 (Evans-Fuchs): explicit constructions of 2-cocycles and central extensions.

Tyler J. Evans

Dmitry B. Fuchs

A (very) brief history of restricted cohomology

• 1955 (Hochschild): $H_*^n(L, M) := \operatorname{Ext}_{U_p(L)}^n(\mathbb{F}, M)$.

Gerhard Hochschild

 2000 (Evans-Fuchs): explicit constructions of 2-cocycles and central extensions.

Tyler J. Evans

Dmitry B. Fuchs

• 2020 (Yuan-Chen-Cao): attempt to generalize to the superalgebras case.

Let $L=L_{ar{0}}\oplus L_{ar{1}}$ be a restricted Lie superalgebra and let M be a L-supermodule.

We set $C^0_*(L, M) = M$ and $C^1_*(L, M) = \text{Hom}(L, M)$.

Let $L=L_{\bar{0}}\oplus L_{\bar{1}}$ be a restricted Lie superalgebra and let M be a L-supermodule.

We set $C^0_*(L, M) = M$ and $C^1_*(L, M) = \text{Hom}(L, M)$.

Definition (Restricted 2-cochains)

Let $\varphi \in C^2_{CE}(L,M)$ (ordinary Chevalley-Eilenberg 2-cochain) and $\omega : L \longrightarrow M$. Then ω is φ -compatible if

Let $L = L_{\bar{0}} \oplus L_{\bar{1}}$ be a restricted Lie superalgebra and let M be a L-supermodule.

We set $C^0_*(L,M)=M$ and $C^1_*(L,M)=\operatorname{Hom}(L,M)$.

Definition (Restricted 2-cochains)

Let $\varphi \in C^2_{CE}(L,M)$ (ordinary Chevalley-Eilenberg 2-cochain) and $\omega:L\longrightarrow M$. Then ω is φ -compatible if

$$\sum_{\substack{x_i = x \text{ or } y \\ x_1 = x, \ x_2 = y}} \frac{1}{\pi(x)} \sum_{k=0}^{p-2} (-1)^k x_p \cdots x_{p-k+1} \varphi([[\cdots [x_1, x_2], x_3] \cdots, x_{p-k-1}], x_{p-k}),$$

with $x, y \in L_{\bar{0}}$, $\pi(x)$ the number of factors x_i equal to x.

Let $L = L_{\bar{0}} \oplus L_{\bar{1}}$ be a restricted Lie superalgebra and let M be a L-supermodule.

We set $C^0_*(L, M) = M$ and $C^1_*(L, M) = \text{Hom}(L, M)$.

Definition (Restricted 2-cochains)

Let $\varphi \in C^2_{CE}(L,M)$ (ordinary Chevalley-Eilenberg 2-cochain) and $\omega:L\longrightarrow M$. Then ω is φ -compatible if

- $\bullet \omega(\lambda x) = \lambda^p \omega(x), \ \forall \lambda \in \mathbb{F}, \ \forall x \in L_{\bar{0}};$

$$\sum_{\substack{x_j=x \text{ or } y \\ x_1=x, x_2=y}} \frac{1}{\pi(x)} \sum_{k=0}^{p-2} (-1)^k x_p \cdots x_{p-k+1} \varphi([[\cdots [x_1, x_2], x_3] \cdots, x_{p-k-1}], x_{p-k}),$$

with $x, y \in L_{\bar{0}}$, $\pi(x)$ the number of factors x_i equal to x.

$$C^2_*(L,M) := \{(\varphi,\omega), \ \varphi \in C^2_{\mathit{CE}}(L,M), \ \omega \ \textit{is} \ \varphi\textit{-compatible} \}$$

 \rightsquigarrow We have a similar (although more complicated) definition for $C^3_*(L, M)$.

• A restricted 2-cocycle is an element $(\alpha, \beta) \in C^2_*(L, M)$ such that

The space of restricted 2-cocycles is denoted by $Z_*^2(L, M)$.

• A restricted 2-cocycle is an element $(\alpha, \beta) \in C^2_*(L, M)$ such that

The space of restricted 2-cocycles is denoted by $Z^2_*(L, M)$.

- A **restricted 2-coboundary** is an element $(\alpha, \beta) \in C^2_*(L, M)$ such that $\exists \varphi \in \text{Hom}(L, M)$,

The space of restricted 2-coboundaries is denoted by $B_*^2(L, M)$.

The previous formulae define maps

$$0 \longrightarrow C^0_*(L,M) \xrightarrow{d^0_*} C^1_*(L,M) \xrightarrow{d^1_*} C^2_*(L,M) \xrightarrow{d^2_*} C^3_*(L,M),$$

with $d_*^0 = d_{CE}^0$.

Theorem

We have $d_*^2 \circ d_*^1 = 0$. Therefore, the quotient space

$$H_*^2(L; M) = Z_*^2(L; M)/B_*^2(L; M)$$

is well defined.

Difficulty: the spaces $C^2_*(L; M)$ and $C^3_*(L; M)$ are **not** \mathbb{Z}_2 -graded.

Difficulty: the spaces $C^2_*(L; M)$ and $C^3_*(L; M)$ are **not** \mathbb{Z}_2 -graded.

Let L be a restricted Lie superalgebra and M a restricted L-module. We define a subspace $C^2_*(L;M)^+ \subset C^2_*(L;M)$ by

$$C_*^2(L;M)^+ := \left\{ (\alpha,\beta) \in C_*^2(L;M), \operatorname{Im}(\beta) \subseteq M_{\bar{0}} \right\}.$$

Difficulty: the spaces $C^2_*(L; M)$ and $C^3_*(L; M)$ are **not** \mathbb{Z}_2 -graded.

Let L be a restricted Lie superalgebra and M a restricted L-module. We define a subspace $C^2_*(L;M)^+ \subset C^2_*(L;M)$ by

$$C_*^2(L;M)^+ := \left\{ (\alpha,\beta) \in C_*^2(L;M), \operatorname{Im}(\beta) \subseteq M_{\bar{0}} \right\}.$$

Lemma

- (i) We have an inclusion $B^2_*(L;M)_{\bar 0} \subset C^2_*(L;M)^+$.
- (ii) The space $C^2_*(L;M)^+$ is \mathbb{Z}_2 -graded and the degree of an homogeneous element $(\alpha,\beta)\in C^2_*(L;M)^+$ is given by $|(\alpha,\beta)|=|\alpha|$.

This Lemma allows us to consider the space $Z^2_*(L;M)^+ := \ker \left(d^2_{*|C^2_*(L;M)^+}\right)$. Thus we can define

$$H_*^2(L;M)^+ := Z_*^2(L;M)^+/B_*^2(L;M)_{\bar{0}}.$$

The space $H^2_*(L; M)^+$ is \mathbb{Z}_2 -graded.

Let $(L, [\cdot, \cdot], (\cdot)^{[p]})$ be a restricted Lie superalgebra, and M be a strongly abelian restricted Lie superalgebra $(i.e, [m, n] = 0 \ \forall m, n \in M, \text{ and } m^{[p]} = 0 \ \forall m \in M_{\bar{0}}).$

A **restricted extension** of L by M is a short exact sequence of restricted Lie superalgebras

$$0\longrightarrow M\stackrel{\iota}{\longrightarrow} E\stackrel{\pi}{\longrightarrow} L\longrightarrow 0.$$

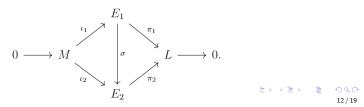
Let $(L, [\cdot, \cdot], (\cdot)^{[p]})$ be a restricted Lie superalgebra, and M be a strongly abelian restricted Lie superalgebra (i.e, $[m, n] = 0 \ \forall m, n \in M$, and $m^{[p]} = 0 \ \forall m \in M_{\bar{0}}$).

A **restricted extension** of L by M is a short exact sequence of restricted Lie superalgebras

$$0 \longrightarrow M \stackrel{\iota}{\longrightarrow} E \stackrel{\pi}{\longrightarrow} L \longrightarrow 0.$$

In the case where $\iota(M) \subset \mathfrak{z}(E) := \{a \in E, [a, b] = 0 \ \forall b \in E\}, M \text{ is a trivial }$ L-module. These extensions are called **restricted central extensions**.

Two restricted central extensions of L by M are called **equivalent** if there is a restricted Lie superalgebras morphism $\sigma: E_1 \to E_2$ such that the following diagram commutes:



$$0\longrightarrow M\stackrel{\iota}{\longrightarrow} E\stackrel{\pi}{\longrightarrow} L\longrightarrow 0.$$

Theorem

Let L be a restricted Lie superalgebra and M a strongly abelian restricted Lie superalgebra. Then, the equivalence classes of restricted central extensions of L by M are classified by $H_*^2(L; M)^+_0$.

$$0 \longrightarrow M \stackrel{\iota}{\longrightarrow} E \stackrel{\pi}{\longrightarrow} L \longrightarrow 0.$$

Theorem

Let L be a restricted Lie superalgebra and M a strongly abelian restricted Lie superalgebra. Then, the equivalence classes of restricted central extensions of L by M are classified by $H^2_*(L;M)^{\pm}_0$.

Structure maps on *E*. Let $(\varphi, \omega) \in Z^2_*(L; M)^+_{\bar{0}}$. The bracket and the *p*- map on *E* are given by

$$[x+m,y+n]_E := [x,y] + \varphi(x,y), \qquad \forall x,y \in L, \ \forall m,n \in M; \tag{1}$$

$$(x+m)^{[p]_{\mathcal{E}}} := (x)^{[p]} + \omega(x), \qquad \forall x \in L_{\bar{0}}, \ \forall m \in M_{\bar{0}}. \tag{2}$$

• 2016 (Schneider and Usefi): Classification of *p*-nilpotent restricted Lie algebras of dimension ≤ 4 (Forum Math.);

- 2016 (Schneider and Usefi): Classification of *p*-nilpotent restricted Lie algebras of dimension ≤ 4 (Forum Math.);
- 2016 (Darijani and Usefi): Classification of p-nilpotent restricted Lie algebras of dimension 5, $p \ge 3$, contains some mistakes (J. Algebra);

- 2016 (Schneider and Usefi): Classification of *p*-nilpotent restricted Lie algebras of dimension ≤ 4 (Forum Math.);
- 2016 (Darijani and Usefi): Classification of p-nilpotent restricted Lie algebras of dimension 5, $p \ge 3$, contains some mistakes (J. Algebra);
- 2023 (Maletesta and Siciliano): Classification of p-nilpotent restricted Lie algebras of dimension 5, $p \ge 3$, using another method (J. Algebra).

- 2016 (Schneider and Usefi): Classification of p-nilpotent restricted Lie algebras of dimension ≤ 4 (Forum Math.);
- 2016 (Darijani and Usefi): Classification of p-nilpotent restricted Lie algebras of dimension 5, $p \ge 3$, contains some mistakes (J. Algebra);
- 2023 (Maletesta and Siciliano): Classification of p-nilpotent restricted Lie algebras of dimension 5, $p \ge 3$, using another method (J. Algebra).

Proposition

Let L be a p-nilpotent restricted Lie superalgebra of dimension n. Then, L is isomorphic to a central extension by a restricted 2-cocycle of a p-nilpotent restricted Lie superalgebra of dimension n-1.

Dimension 3

- sdim(L) = (1|2): $L = \langle e_1 | e_2, e_3 \rangle$.
 - **1** $\mathbf{L}_{1|2}^1 = \langle e_1 | e_2, e_3 \rangle$ (abelian):
 - $e_1^{[p]} = 0$:
 - 2 $L_{1|2}^2 = \langle e_1 | e_2, e_3; [e_2, e_3] = e_1 \rangle$:
 - $e_1^{[p]} = 0$:
- sdim(L) = (2|1): $L = \langle e_1, e_2 | e_3 \rangle$.
 - **1** $\mathbf{L}_{2|1}^1 = \langle e_1, e_2 | e_3 \rangle$ (abelian):
 - $e_1^{[p]} = e_2^{[p]} = 0;$
 - $e_1^{[p]} = e_2, e_2^{[p]} = 0.$

- **3** $L_{1|2}^3 = \langle e_1 | e_2, e_3; [e_1, e_2] = e_3 \rangle$:
- $e_1^{[p]} = 0.$ **4** $\mathbf{L}_{1|2}^4 = \langle e_1 | e_2, e_3; [e_3, e_3] = e_1 \rangle$:
 - $e_1^{[p]} = 0$:

- **2** $L_{2|1}^2 = \langle e_1, e_2 | e_3; [e_3, e_3] = e_2 \rangle$:
 - $e_1^{[p]} = e_2^{[p]} = 0;$ $e_1^{[p]} = e_2, e_2^{[p]} = 0.$
- $\operatorname{sdim}(L) = (3|0)$: $L = \langle e_1, e_2, e_3 \rangle$, (see Schneider-Usefi).
 - **1** $L_{3|0}^1 = \langle e_1, e_2, e_3 \rangle$ (abelian):
 - $e_1^{[p]} = e_2^{[p]} = e_2^{[p]} = 0$: $e_1^{[p]} = e_2, e_2^{[p]} = e_2^{[p]} = 0;$

 - $e_1^{[p]} = e_2, \ e_2^{[p]} = e_3, \ e_2^{[p]} = 0.$

- **2** $L_{3|0}^2 = \langle e_1, e_2, e_3; [e_1, e_2] = e_3 \rangle$
 - $e_1^{[p]} = e_2^{[p]} = e_2^{[p]} = 0;$
 - $e_1^{[p]} = e_3, e_2^{[p]} = e_2^{[p]} = 0.$

The classification method

• For each 3-dimensional Lie superalgebra of the previous list, we compute the equivalence classes of non-trivial *ordinary* 2-cocycles under the action by automorphisms given by

$$(A\varphi)(x,y) = \varphi(A(x),A(y)), \ \forall x,y \in L$$
 (3)

- We build the corresponding central extensions.
- Some of the superalgebras obtained are isomorphic. We detect and remove redundancies.
- Using Jacobson's Theorem, we check whether the *p*-maps on the even part are compatible with the odd part.

Dimension 4: the classification. Lie superalgebras.

Theorem

The classification of 4-dimensional nilpotent Lie superalgebras over an algebraically closed field of characteristic different from 2 is given by:

```
\mathbf{L}_{\mathbf{0}|\mathbf{4}}^{\mathbf{1}}: [\cdot,\cdot] = 0.
sdim(L) = (1|3): L = \langle x_1 | x_2, x_3, x_4 \rangle
 \mathsf{L}^1_{1|3}: abelian;
  L_{1|3}^2: [x_1, x_3] = x_4;
 L_{1|3}^3: [x_2,x_3]=x_1;
  L_{1|3}^4: [x_1, x_2] = x_3, [x_1, x_3] = x_4;
  L_{1|3}^5: [x_3, x_3] = x_1;
  L_{1|3}^6: [x_2, x_2] = x_1, [x_3, x_4] = x_1.
sdim(L) = (2|2): L = \langle x_1, x_2 | x_3, x_4 \rangle
 L_{2|2}^1: abelian;
  L_{2|2}^2: [x_3, x_4] = x_2;
  L_{2|2}^3: [x_3, x_3] = x_2, [x_3, x_4] = x_1;
  \mathbf{L}_{2|2}^4: [x_3, x_3] = [x_4, x_4] = x_2, [x_3, x_4] = x_1;
  L_{2|2}^5: [x_1, x_3] = x_4;
  \mathbf{L}_{2|2}^{\mathbf{6}}: [x_1, x_3] = x_4, [x_3, x_3] = x_2.
  L_{2|2}^7: [x_4, x_4] = x_1.
```

 $sdim(L) = (0|4): L = \langle 0|x_1, x_2, x_3, x_4 \rangle$

```
\begin{split} &\frac{sdim(L)=(3|1):}{L_{3|1}^{1}:abelian;}:L=\langle x_{1},x_{2},x_{3}|x_{4}\rangle\\ &\frac{L_{3|1}^{1}:[x_{1},x_{2}]=x_{3};}{L_{3|1}^{3}:[x_{2},x_{2}]=x_{3};}\\ &L_{3|1}^{4}:[x_{1},x_{2}]=[x_{3},x_{4}]=x_{3}.\\ &\frac{L_{3|1}^{4}:[x_{1},x_{2}]=[x_{3},x_{4}]=x_{3}.}{sdim(L)=(4|0):}:L=\langle x_{1},x_{2},x_{3},x_{4}|0\rangle\\ &\frac{L_{4|0}^{1}:abelian;}{L_{4|0}^{2}:[x_{1},x_{2}]=x_{3};}\\ &L_{4|0}^{3}:[x_{1},x_{2}]=x_{3},[x_{1},x_{3}]=x_{4}. \end{split}
```

Dimension 4: the classification. p|2p maps.

Theorem

The p-nilpotent structures on nilpotent Lie superalgebras of total dimension 4 with $dim(L_{\bar{1}}) > 0$ are given by:

- sdim(L) = (0|4): none.
- $sdim(L) = (1|3): x_1^{[p]} = 0.$
- sdim(L) = (2|2):
 - $x_1^{[p]_1} = x_2^{[p]_1} = 0;$
 - $x_1^{[p]_2} = x_2, \ x_2^{[p]_2} = 0.$
- sdim(L) = (3|1):
 - Case Lo abelian:
 - * $x_1^{[p]_1} = x_2^{[p]_1} = x_3^{[p]_1} = 0;$
 - * $x_1^{[p]_2} = x_2, \ x_2^{[p]_2} = x_3^{[p]_2} = 0.$
 - * $x_1^{[p]_3} = x_2, \ x_2^{[p]_3} = x_3, \ x_3^{[p]_3} = 0.$
 - Case $L_{\bar{0}} \cong L^2_{3|0} = \langle x_1, x_2, x_3; [x_1, x_2] = x_3 \rangle$:
 - * $x_1^{[p]_4} = x_2^{[p]_4} = x_3^{[p]_4} = 0;$
 - $x_1^{[p]_5} = x_3, \ x_2^{[p]_5} = x_3^{[p]_5} = 0.$

Thank you for your attention!