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Lie superalgebras in characteristic 2, definition

A Lie superalgebra over a field K of characteristic p = 2 is a Z /2 Z-graded vector
space g = g P g7 such that:

@ the even part gg is a Lie algebra;
@ the odd part gi is a gg-module ;
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A Lie superalgebra over a field K of characteristic p = 2 is a Z /2 Z-graded vector
space g = g P g7 such that:

@ the even part gg is a Lie algebra;
@ the odd part gi is a gg-module ;

@ there is a map s : g1 — gp, satisfying s(Ax) = A2s(x), such that the bracket
of two odd elements is given by:

[yl = s(x+y) = s(x) =s(y), ¥x,y € g1 (1)

The Jacobi identity for two odds elements reads as follows:

[s(); ¥] = [x; [, ¥1], Vx € g1, Vy € g. (2)

3/20



Lie superalgebras in characteristic 2, definition

A Lie superalgebra over a field K of characteristic p = 2 is a Z /2 Z-graded vector
space g = g P g7 such that:

@ the even part gg is a Lie algebra;
@ the odd part gi is a gg-module ;

@ there is a map s : g1 — gp, satisfying s(Ax) = A2s(x), such that the bracket
of two odd elements is given by:

[x,y] == s(x+y) —s(x) —s(y), Vx,y € g1 (1)

The Jacobi identity for two odds elements reads as follows:

[s(); ¥] = [x; [, ¥1], Vx € g1, Vy € g. (2)

Example: any associative superalgebra with [a, b] = ab — ba and s(a) = a°.
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Lie superalgebras in characteristic 2, remarks

1
o If p # 2, take s(x) = 5[x,x] (for x odd) to recover the usual definition of a
Lie superalgebra;
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(i+1) _
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Lie

superalgebras in characteristic 2, remarks

1
If p# 2, take s(x) = 5[x,x] (for x odd) to recover the usual definition of a

Lie superalgebra;

This definition was given (independently) by Lebedev and Deligne. Earlier
instances can be found in
» Bahturin Y., Mikhalev A. V., Petrogradsky V. M., Zaicev, M. V.Infinite
dimensional Lie superalgebras (1992) (page 18);
» Nijenhuis, A. and Richardson, R. W., Cohomology and Deformations in Graded
Lie Algebras (1966).

All the usual definitions have to take the squaring into account, for example
the derived superalgebras of g are given by
0@ =g, " =1[g", g+ Span{s(x), x € (s)s1}.

Lie superalgebras in characteristic 2 admitting a Cartan matrix have been
classified by Bouarroudj, Grozman, Leites, SIGMA 2009.
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Lie superalgebras, classification in dim = 2

Proposition

Let g be a 2-dimensional Lie superalgebras over an arbitrary field of characteristic
2. Then, g is isomorphic to one of the following superalgebras.

o sdim(g) = (0[2): g = Lg), = (Oler, &2).

o sdim(g) = (1]1); g = (e1ez).

o th = (ei]e; [e1, &] = &); 9 Li\l = (e1|ex) (abelian);
(2] Lﬁl = (ei|e2; s(&2) = e1);

e sdim(g) = (2|0): g = (e1, ]0).

Q L3 = (e, &|0);[er, 2] = & ; Q Lo = (e1, &(0) (abelian);
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Lie superalgebras in characteristic 2, cohomology (1)

This cohomology was introduced by Bouarroudj and Makhlouf (2023).
Let g be a Lie superalgebra in characteristic 2 and let M be a g-module.

A 1-cocycle on g with values in M is a linear map ¢ : g — M such that

die(p)(x,2) == x - p(2) + 2 o(x) + ¢([x, 2]) = 0,¥x, z € g;
() (x) = x - p(x) + @(s(x)) = 0, Vx €1,

The space of 1-cocycles on g with values in M is denoted by XZ(g; M).
We also use the notation 2*(¢) := (diz(¢), 61 ().
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Lie superalgebras in characteristic 2, cohomology (2)

A 2-cocycle on g with values in M consists of a pair («,7) such that:
Q@ a:gAg— Mis a bilinear map;
Q 7 : g7 — M satisfies
Y(Ax) = X2y(x), VA eK, Vxeg;
alx,y) =7(x+y) +v(x) +(y), Yxy €
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Lie superalgebras in characteristic 2, cohomology (2)

A 2-cocycle on g with values in M consists of a pair («,7) such that:
Q@ a:gAg— Mis a bilinear map;
Q 7 : g7 — M satisfies

Y(Ax) = A2y(x), VA eK, Vx eg;
alx,y) =v(x+y) +v(x) +1(y), Vx,y € gi;

@ For all x,y,z € g and for all u € g7, we have

d(ZIE(O‘)(Xv)/7Z) ::x,()?,z (X ~a(y,z) + of[x, yl, z)): 0;

82(c,Y)(u,2) == u-a(u,z) + z - y(u) + as(u), z) + o([u, 2], u) = 0.

The space of 2-cocycles on g with values in M is denoted by XZ?(g; M).
We also use the notation 9%(a, ) := (d2g(a), 6%(a, 7).

There is a graduation on XZ?(g; M) defined by |(cv, 7)| := |al.

S kel
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Left-symmetric superalgebras in characteristic 2

A left-symmetric superalgebra (V/,>) in characteristic p = 2 is a vector superspace
V = V5 @ Vi endowed with a bilinear product > : V x V — V satisfying

() xp(ypz)+ (xpy)pz = yp(xpz)+ (yox)>z, Vx,y,z€V;
(i) xp(xpy) = (xpx)py, Vxe Vi VyelV.
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Left-symmetric superalgebras in characteristic 2

A left-symmetric superalgebra (V/,>) in characteristic p = 2 is a vector superspace
V = V5 @ Vi endowed with a bilinear product > : V x V — V satisfying

() xp(ypz)+ (xpy)pz = yp(xpz)+ (yox)>z, Vx,y,z€V;
(i) xp(xpy) = (xpx)py, Vxe Vi VyelV.
Proposition

Let (V,>) be a left-symmetric superalgebra. Then, (g(V),[-,],s) is a Lie
superalgebra with g(V') = V as superspaces and

[x,¥] =xpy+y>x, Vx € V5, Vy eV, (3)
s(x) == x> x, Vx € W. (4)

A left-symmetric product > on a Lie superalgebra (V, [, ], s) is called compatible
with the Lie superalgebra structure if Conditions (3) and (4) are satisfied.
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Left-symmetric superalgebras in characteristic 2, example

Proposition

Let (g,[,],s) be a Lie superalgebra equipped with an invertible derivation D. Let
XDy = Dfl([x, D(y)]), Vx,y € g.
Then, > is a left-symmetric product compatible with the Lie structure.
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Proposition

Let (g,[,],s) be a Lie superalgebra equipped with an invertible derivation D. Let

XDy = Dfl([x, D(y)]), Vx,y € g.
Then, > is a left-symmetric product compatible with the Lie structure.

Example. Consider the Hamiltonian superalgebra hn(0|4) (see Benayadi and Bouarroud;j,
Journal of Algebra, 2018). As a vector space it can be considered as
O (0]4) = Span{H | £ € K[E, ]} =~ €, 7]/ K 1,
where &1, &2, M1, 12 are odd indeterminates and
of 0 of 9 of 9 of o0
TG om  Omd& | 0& O O 0&
The Lie bracket [Hr, Hg] = H{r g} is given by the Poisson bracket:
(r.q)_ Of D& Of Dg  Of g Of Og
0& 0m  O0mo&  0& O One 062

Hr
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Proposition

Let (g,[,],s) be a Lie superalgebra equipped with an invertible derivation D. Let

XDy = Dfl([x, D(y)]), Vx,y € g.
Then, > is a left-symmetric product compatible with the Lie structure.

Example. Consider the Hamiltonian superalgebra hn(0|4) (see Benayadi and Bouarroud;j,
Journal of Algebra, 2018). As a vector space it can be considered as
O (0]4) = Span{H | £ € K[E, ]} =~ €, 7]/ K 1,
where &1, &2, M1, 12 are odd indeterminates and
of 0 of 9 of 9 of o0
TG om  Omd& | 0& O O 0&
The Lie bracket [Hr, Hg] = H{r g} is given by the Poisson bracket:
(r.q)_ Of D& Of Dg  Of g Of Og
0& 0m  O0mo&  0& O One 062

Hr

Then, its derived superalgebra §1)(0|4) admits an invertible derivation,
thus a left-symmetric structure.

™7 = = = o
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Classification in dimension 2

For each Lie superalgebra g of dimension 2, we classified up to isomorphism all the

non-zero left-symmetric structures that are compatible with the bracket and the
squaring of g.
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Classification in dimension 2

For each Lie superalgebra g of dimension 2, we classified up to isomorphism all the
non-zero left-symmetric structures that are compatible with the bracket and the
squaring of g.

g Bracket on g Left-symmetric product on g Conditions
€16 = & None
1 €161 =cey; €16 = € e#0,1
I-1\1 ler, 2] = e E— — 70,
€€ = €1, €16 = & None
erer =cer; e = (l+¢)e; et =ce e#0
&6 = e None
L%u s(e) =ea : : :
ele1 = €1; €1 = &; @ = &, & =@ None
. elep = e None
Li’u abelian 171 !
eler =€ a6 =& 66 =& None

The case where sdim(g) = (1]1).
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Classification in dimension 2

For each Lie superalgebra g of dimension 2, we classified up to isomorphism all the
non-zero left-symmetric structures that are compatible with the bracket and the
squaring of g.

g Bracket on g Left-symmetric product on g Conditions
€16 = & None
1 €161 =cey; €16 = € e#0,1
I-1\1 ler, 2] = e E— — 70,
€€ = €1, €16 = & None
erer =cer; e = (l+¢)e; et =ce e#0
&6 = e None
L%u s(e) =ea : : :
ele1 = €1; €1 = &; @ = &, & =@ None
. elep = e None
Li’u abelian 171 !
eler =€ a6 =& 66 =& None

The case where sdim(g) = (1]1).

e g= L%IO, [e1, &2] = e : 10 non-isomorphic left-symmetric products;

e g= L%IO, abelian: 5 non-isomorphic left-symmetric products.

10/20



The language of connections

A connection on a Lie superalgebra g is an even linear map V : g — End(g).
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The torsion of the connection V is given by a pair of maps (T, U), where
T:gxg—g, and U: g7 — g, are defined by

T(x,y) = Vi(y) + Vy(x) + [x,¥], Vx,y € g
U(x) := Vx(x) + s(x), Vx € gi.

The connection V is called torsion-free if (T, U) = (0,0).
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A connection on a Lie superalgebra g is an even linear map V : g — End(g)

The torsion of the connection V is given by a pair of maps (T, U), where
T:gxg—g, and U: g7 — g, are defined by

T(xy) = Vily) + Vy(x) + [x.y], ¥x,y € g;
U(x) := Vx(x) + s(x), Vx € gi.

The connection V is called torsion-free if (T, U) = (0,0).
The curvature of the connection V is given by a pair of maps (R, S), where

R:gxg— End(g), and S : g7 — End(g), are defined by

R(Xa)/) = v[x,y] + [vxavy]v VX7_)/ €y
S(X) = VS(X) + Vi, Vx € 91
The connection V is called flat if (R, S) = (0, 0).
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The language of connections

@ In the case where the connection V is flat, the map x — V, is a
representation of the Lie superalgebra g into End(g).
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The language of connections

@ In the case where the connection V is flat, the map x — V, is a
representation of the Lie superalgebra g into End(g).

@ A connection V on g defines a bilinear operation
>igxg—g, xby:=Vi(y), Vx,ye€g.
Proposition

The operation > is a left-symmetric product compatible with the bracket and the
squaring of g if and only if the connection V is flat and torsion-free.

@ There is also a notion of covariant derivative of the torsion and of covariant
derivative of the curvature of a connection.

As in characteristic zero, a flat connection on g whose covariant derivative of the
torsion vanishes defines a (characteristic 2 version) of a post-Lie product.
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Lagrangian extensions

@ To our best knowledge, Lagrangian extensions were introduced by M.
Bordemann under the name T *-extensions, dealing with symmetric bilinear
forms (Acta Math. Univ. Comenianae, 1997).
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Lagrangian extensions

@ To our best knowledge, Lagrangian extensions were introduced by M.
Bordemann under the name T *-extensions, dealing with symmetric bilinear
forms (Acta Math. Univ. Comenianae, 1997).

@ Roughly speaking, starting from a non-associative algebra A, he defines a
product and a symmetric bilinear form on the space A& A*.

@ The notion was then studied by Baues and Cortes, who name it Lagrangian
extensions, in the context of Lie algebras admitting a flat connection and the
bilinear form is antisymmetric (Astérisque, 2016).

@ The superization is due to Bouarroudj and Maeda (J. Algebra Appl., 2023)

@ Our goal: the case of Lie superalgebras in characteristic 2 (with Benayadi
and Bouarroudj, to appear in Journal of Pure and Applied Algebra)
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Quasi-Frobenius Lie superalgebras

Let g = g5 @ g7 be a Lie superalgebra in characteristic 2. A bilinear form w on g
with values in K is called

@ ortho-orthogonal if w is even;
@ periplectic if w is odd;
@ closed if the following cocycle conditions are satisfied:

O w([X7y]7z):07 Vx,y,z € g; (5)
xX,y,Z

w(s(x),y) =wlx [x;¥]), Vx € g1, Vy € 0. (6)
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Quasi-Frobenius Lie superalgebras

Let g = g5 @ g7 be a Lie superalgebra in characteristic 2. A bilinear form w on g

with values in K is called
@ ortho-orthogonal if w is even;
Q@ periplectic if w is odd,;
@ closed if the following cocycle conditions are satisfied:

O w([XLVLZ):O? Vx,y,z € g;
xX,y,Z

w(s(x),y) =wlx [x;¥]), Vx € g1, Vy € 0.
An bilinear form on g is called 1-antisymmetric if

wix,y) =w(y,x), Vx,y €gs. t. |x| =y
An bilinear form on g is called 1-antisymmetric if
w(x,y) =w(y,x), Vx,y € g.

A Lie superalgebra g is called quasi-Frobenius if it is equipped with a
1-antisymmetric non-degenerate closed form w.

; and w(x,x) =0 Vx € g;.

N
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Construction of the Lagrangian extensions

In the sequel, | will focus on the ’ ortho-orthogonal | case.
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Construction of the Lagrangian extensions

In the sequel, | will focus on the ’ ortho-orthogonal | case.

Let (b, [, ]y, 5y) be a Lie superalgebra endowed with a torsion-free flat connection
V : b — End(h). We define the dual representation

p:b—End(h"),  p(x)(§) = o Vi
Let (a,y) € XZ?(h, h*)g be a 2-cocycle.

On the space g := h @ h*. The brackets and squaring are defined as follows:

[Xa)/]g = [X7y]h + Q(X,y), [Xag]g = p(X)(E)a VX,}/ S bv v§ S h*
Sg(x +&) 1= sp(x) +7(x) + p(x)(§), Vx € by, V€ € by
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Let (b, [, ]y, 5y) be a Lie superalgebra endowed with a torsion-free flat connection
V : b — End(h). We define the dual representation

p:b—End(h"),  p(x)(§) = o Vi
Let (a,y) € XZ?(h, h*)g be a 2-cocycle.

On the space g := h @ h*. The brackets and squaring are defined as follows:

[Xa)/]g = [X7y]h + Q(X,y), [Xag]g = p(X)(E)a VX,}/ S bv v§ S h*
Sg(x +&) 1= sp(x) +7(x) + p(x)(§), Vx € by, V€ € by

We define an ‘ortho—orthogonal ‘ form as follows:

wx+&y+Q) =E&y)+{(x), x+&y+Ceq.
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Construction of the Lagrangian extensions

We define the first and second Lagrangian cochain spaces as

XCL(h,b*) == {¢ € XC'(h,b%), ¥(x)(y) = ¥(y)(x), Vx,y € b},
XCE(h,b*) := {(a, ) € XC?(b,b*), satisfying (7) and (8)}, where
O alx,y)(z) =0, Vx,y,z € b; (7)
X,y,z

1)) + alx,y)(x) =0, Vx € by, Yy €. (8)
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ng a(x,y)(z) =0, ¥x,y,z € b; (7)
Y(x)(y) +alx,y)(x) =0, Vx € by, Vy € b. (8)

Theorem

Let (h,V) be a Lie superalgebra equipped with a flat and torsion-free connection
V and let (o,7) € XZ%(h,b*)5 be an even 2-cocycle.

@ The form w on g = bh @ b* is closed if and only if (a,7y) is a

2-cocycle.
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Construction of the Lagrangian extensions

We define the first and second Lagrangian cochain spaces as

XCL(h,5%) = {¢ € XC'(h,5"), $(x)(y) = b(¥)(x), ¥x,y € b},
XCE(h,b*) := {(a, ) € XC?(b,b*), satisfying (7) and (8)}, where

ng a(x,y)(z) =0, ¥x,y,z € b; (7)
Y(x)(y) +alx,y)(x) =0, Vx € by, Vy € b. (8)

Theorem

Let (h,V) be a Lie superalgebra equipped with a flat and torsion-free connection
V and let (o,7) € XZ%(h,b*)5 be an even 2-cocycle.

@ The form w on g = bh @ b* is closed if and only if (a,7y) is a
2-cocycle.

@ In this case, one can canonically define a strongly polarized quasi-Frobenius
Lie superalgebra (g,w, b*,h), where g = b & b*, called T*-extension of
(b, V).

= - - =
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The converse

Let (g,w) be a quasi-Frobenius Lie superalgebra. A strong polarization of (g,w)
is a decomposition g = a®/N as vector superspaces, where a is a homogeneous
Lagrangian ideal of g (a* = a) and N is a Lagrangian subspace.
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The converse

Let (g,w) be a quasi-Frobenius Lie superalgebra. A strong polarization of (g,w)
is a decomposition g = a@® /N as vector superspaces, where a is a homogeneous
Lagrangian ideal of g (a* = a) and N is a Lagrangian subspace.

Theorem

Let (g,wgq, a, N) be a strongly polarized quasi-Frobenius Lie superalgebra and let
hi=g/a

If w is ortho-orthogonal, there exists an even Lagrangian cocycle («,v) and a a
flat and torsion-free connection V on by such that (g,w, a, N) is isomorphic to the
T*-extension of (h, V) by («,7).
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Equivalence of Lagrangian extensions

An isomorphism of Lagrangian extensions of by is a Lie isomorphism
®: (g.w) = (¢, ') satisfying w(x,y) = w'(®(x), ®(y)), Vx,y € g,
such that the following diagram commutes:

0 y a h 0

of 4L
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Equivalence of Lagrangian extensions

An isomorphism of Lagrangian extensions of by is a Lie isomorphism
®: (g.w) = (¢, ') satisfying w(x,y) = w'(®(x), ®(y)), Vx,y € g,
such that the following diagram commutes:

0 a g h 0
‘I"nl ﬁl? l:
+
(] a’ > g! h 7 0

Theorem

Let (h,V) be a Lie superalgebra equipped with a flat torsion-free connection V.
Two Lagrangian extensions of (1, V) are isomorphic if and only if they correspond
to the same extension 2-cocycle in XH? (b, b*)5.
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An example

Consider ) := th given in the basis (e|f) by [e,f] = f and s = 0. Let ¢ € K. We
define a flat torsion-free connection V¢ on h by

Vi(e)=(1+c¢e)e, Vi(f)=ef, Vi(e)=(1+e)f, Vif)=0

O |In the case where ¢ # 1, we have XH?(h, h*) = 0;
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An example

Consider ) := th given in the basis (e|f) by [e,f] = f and s = 0. Let ¢ € K. We

define a flat torsion-free connection V¢ on h by

Vi(e)=(1+c¢e)e, Vi(f)=ef, Vi(e)=(1+e)f, Vif)=0

O |In the case where ¢ # 1, we have XH?(h, h*) = 0;
O In the case where e = 1, XH?(h, h*) is one-dimensional and spanned by

(a2,73), where
a=f*@e* Af*; Yi(f)=e".
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Thank you for your attention

Main reference:

S. Benayadi, S. Bouarroudj, Q. Ehret,
Left-symmetric superalgebras and Lagrangian extensions of Lie superalgebras in
characteristic 2,
arXiv:2501.15432,
to appear in Journal of Pure and Applied Algebra.
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