
The superization of Hochschild’s Lemma and restricted
Lie-Rinehart superalgebras

Quentin Ehret

Winter Mathematics Research International Workshop
Lie Theory and Related Areas

Sultan Qaboos University, Muscat, Oman

Joint work with
Sofiane Bouarroudj (NYU Abu Dhabi)

Abdenacer Makhlouf (Haute-Alsace University, France)
Nurtas Shyntas (NYU Abu Dhabi)



Outline of the talk

1 Lie-Rinehart (super)algebras

2 Restricted Lie algebras, restricted Lie-Rinehart algebras

3 The superization of Hochschild’s Lemma

4 Modules, semi-direct product, universal enveloping algebra

2 / 22



Lie-Rinehart algebras: definition

J. Herz (1953) -“pseudo-algèbre de Lie”;

R. Palais (1961) -“d-Lie ring”;

G. Rinehart (1963) -“(R,A)-Lie algebras”;
Differential form on general commutative algebras, Trans. AMS 108

J. Huebschmann (1990) -“Lie-Rinehart algebra”.
Poisson cohomology and quantization, J. Reine Angew. Math. 408

Johannes Huebschmann

Definition

A Lie-Rinehart algebra is a triple (A, L, ρ), where

A is an associative commutative algebra;(
L, [−,−]

)
is a Lie algebra that is also an A-module;

ρ : L → Der(A) is an A-linear Lie algebras morphism satisfying the Leibniz
identity

[x , ay ] = a[x , y ] + ρ(x)(a)y , ∀a ∈ A, ∀x , y ∈ L.
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Lie-Rinehart algebras: examples

Let A be an associative commutative algebra. Then, Der(A) is a Lie algebra with
the commutator bracket and the triple (A,Der(A), id) is a Lie-Rinehart algebra.

(Huebschmann) Let (A, {−, −}) be a Poisson algebra with unit. Let Ω(A) be its
module of Kähler differentials:

Ω(A) =
{
da, a ∈ A, d(a+ b) = da+ db, d(ab) = dab + adb, d1 = 0

}
.

[xdu, ydv ] := x{u, y}dv + y{x , v}du + xyd{u, v}, ∀x , y , u, v ∈ A.

ρ(xdu) = x{u, −}.

Then (A,Ω(A), ρ) is a Lie-Rinehart algebra.

Universal enveloping algebra (Rinehart 1963, Huebschmann 1990).

U(A, L, ρ) = U+(A⋊ L)/ < i(a)i(b + x) − i(a(b + x)), a, b ∈ A, x ∈ L >
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Lie-Rinehart superalgebras

S. Chemla (Manuscripta Math. 87, 1995),

C. Roger (Bull. Soc. Roy. Sci. Liège, 89, 2020),

QE.- A. Makhlouf (Commun. Math. 30, 2022),

T. Lamkin (Algebr. Represent. Theor. 28, 2025)

Definition

A Lie-Rinehart superalgebra is a triple (A, L, ρ), where

A is an associative supercommutative superalgebra;(
L, [−,−]

)
is a Lie superalgebra that is also an A-module;

ρ : L → Der(A) is an A-linear Lie superalgebras morphism satisfying the
Leibniz identity

[x , ay ] = (−1)|a||x|a[x , y ] + ρ(x)(a)y , ∀a ∈ A, ∀x , y ∈ L.
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Restricted Lie algebras

From now on, K is a field of characteristic p ≥ 3.

Definition (Jacobson, Restricted Lie algebras of characteristic p, Trans. AMS 50, 1941)

A restricted Lie algebra is a Lie algebra L equipped with a map (−)[p] : L −→ L
satisfying for all x , y ∈ L and for all λ ∈ K:

1 (λx)[p] = λpx [p];

2

[
x , y [p]

]
= [[· · · [x ,

p terms︷ ︸︸ ︷
y ], y ], · · · , y ];

3 (x + y)[p] = x [p] + y [p] +

p−1∑
i=1

si (x , y),

Nathan Jacobson (1910-1999)

with isi (x , y) the coefficient of Z i−1 in adp−1
Zx+y (x). Such a map (−)[p] : L −→ L is called

p-map.

Example: any associative algebra A with [a, b] = ab − ba and a[p] = ap, ∀a, b ∈ A.
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Restricted Lie algebras

Example

For any associative algebra A , Der(A) is a restricted Lie algebra with the
commutator and the p-th power.

Theorem (Jacobson)

Let L be a Lie algebra. Let (ej)j∈J be a basis of L, and let the elements fj ∈ L be
such that (adej )

p = adfj . Then, there exists exactly one p-mapping (−)[p] : L → L
such that

e
[p]
j = fj for all j ∈ J.
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Towards restricted Lie-Rinehart algebras

Earlier instances go back to Hochschild (1955).
Simple algebras with purely inseparable splitting fields of exponent 1, Trans. AMS 79.

Hochschild’s Lemma
▶ U : associative algebra over the field of integers modulo p

▶ V ⊂ U : commutative subalgebra

▶ Du(w) = uw − wu, ∀u,w ∈ U.

Then, for all u ∈ U such that Du(V ) ⊂ V , we have

(vu)p = vpup + Dp−1
vu (v)u, ∀v ∈ V .

Let (A, L, ρ) be a Lie-Rinehart algebra. Applying the Lemma with U the universal
enveloping algebra of (A, L, ρ), and V = A, we obtain

(ax)p = apxp + ρ(ax)p−1(a)x , ∀a ∈ A, ∀x ∈ L.

“Modern version”, P. Schauenburg (2016).
Let (A, L, ρ) be a Lie-Rinehart algebra and let (ϕ,M) be a Lie-Rinehart module.
Then, we have

ϕ(ax)p = apϕ(x)p + ρ(ax)p−1(a)ϕ(x).
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Restricted Lie-Rinehart algebra: definition

D. Rumynin, Duality for Hopf algebroids, J. Algebra 223 (2000);

I. Dokas, Cohomology of restricted Lie-Rinehart algebras and the Brauer
group, Adv. Math. 231 (2012).

A Lie-Rinehart algebra (A, L, ρ) is called restricted if L is a restricted with a
p-map (−)[p] : L → L, and if moreover, we have

(ax)[p] = apx [p] + ρ(ax)p−1(a)x , ∀a ∈ A, ∀x ∈ L. (1)

Our leading example (Dokas). Let A be an associative commutative algebra.
Then, (A,Der(A), id) is a restricted Lie-Rinehart algebra.

Proof: Hochschild’s Lemma.
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Towards the superization

Goal: to define the notion of restricted Lie-Rinehart superalgebra;

For any associative supercommutative superalgebra A, the triple
(A,Der(A), id) must provide an example.

Idea: to prove a super-version of the Hochschild’s Lemma.

Strategy: generalize the proof of Schauenburg to the supercase.
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Superization of Hochschild’s Lemma

Theorem (Bouarroudj, E., Makhlouf, Shyntas)

Let (A, L, ρ) be a Lie-Rinehart superalgebra over a field K of characteristic p ≥ 3 and let
(ϕ,M) be a Lie-Rinehart module. Then, we have

ϕ(ax)p = apϕ(x)p + ρ(ax)p−1(a)ϕ(x), ∀a ∈ A0̄, ∀x ∈ L0̄; (2)

ϕ(ax)2p = a2pϕ(x)2p + ρ(ax)2p−1(a)ϕ(x)

+

p−1∑
i=0

λiρ(ax)
i (a)ρ(ax)2p−2−i (a)ϕ(x)2, ∀a ∈ A0̄, ∀x ∈ L1̄; (3)

ϕ(ax)2p = 0, ∀a ∈ A1̄, ∀x ∈ L0̄; (4)

ϕ(ax)p = a
(
ρ(x)(a)

)p−1
ϕ(x), ∀a ∈ A1̄, ∀x ∈ L1̄, (5)

where the coefficients λi are given by

λi =


2(−1)

i
2 if i is even, 0 ≤ i < p − 1;

2(−1)
i−1
2 if i is odd, 1 ≤ i < p − 1;

(−1)
p−1
2 if i = p − 1.

(6)
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Superization of Hochschild’s Lemma

Elements of the proof.

Consider the Z2-graded ring V = Z[x0, x1, x2, · · · ], such that |xi+1| = |xi | + |δ|,
where δ is the derivation of V defined by δ(xi ) = xi+1.

Key point: study the polynomials Γk,j defined by Γ1,1 = x0 and

Γk+1,j =


x0δ(Γk,1), j = 1

x0δ(Γk,j) + (−1)|δ||Γk,j−1|x0Γk,j−1, j = 2, · · · , k

x0Γk,k , j = k + 1.

Proposition (Case x0 even, δ odd)

Γ2p,j ≡ 0 mod p, for all 3 ≤ j ≤ 2p − 1.

Let (A, L, ρ) be a Lie-Rinehart superalgebra. Applying a well-chosen map
f : V → A gives the result. □
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Restricted Lie-Rinehart superalgebras

Definition (Restricted Lie superalgebra)

A restricted Lie superalgebra is a Lie superalgebra L = L0̄ ⊕ L1̄ such that

1 The even part L0̄ is a restricted Lie algebra;

2 The odd part L1̄ is a Lie L0̄-module;

3

[
x , y [p]

]
= [[...[x ,

p terms︷ ︸︸ ︷
y ], y ], ..., y ], ∀x ∈ L1̄, y ∈ L0̄.

We can define a map (·)[2p] : L1̄ → L0̄ by

x [2p] =
(
x2

)[p]
, with x2 =

1

2
[x , x ], x ∈ L1̄.

Examples.

associative superalgebras;

Der(A) with A associative superalgebra.
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Restricted Lie-Rinehart superalgebras

A Lie-Rinehart superalgebra (A, L, ρ) is called restricted if the Lie superalgebra L
is restricted and if in addition, we have

(ax)[p] = apx [p] + ρ(ax)p−1(a)x , ∀a ∈ A0̄, ∀x ∈ L0̄; (7)

(ax)[2p] = a2px [2p] + ρ(ax)2p−1(a)x

+

p−1∑
i=0

λiρ(ax)
i (a)ρ(ax)2p−2−i (a)x2, ∀a ∈ A0̄, ∀x ∈ L1̄; (8)

(ax)[2p] = 0, ∀a ∈ A1̄, ∀x ∈ L0̄; (9)

(ax)[p] = a
(
ρ(x)(a)

)p−1
x , ∀a ∈ A1̄, ∀x ∈ L1̄; (10)

where the coefficients λi are given by

λi =


2(−1)

i
2 if i is even, 0 ≤ i < p − 1;

2(−1)
i−1
2 if i is odd, 1 ≤ i < p − 1;

(−1)
p−1
2 if i = p − 1.

and x2 := 1
2 [x , x ]. 14 / 22



Restricted Lie-Rinehart superalgebras

Example

Let A be an associative supercommutative superalgebra. Then, (A,Der(A), id) is a
restricted Lie-Rinehart superalgebra.

Proof. Apply the superized Hochschild’s Lemma to the representation (id,A).

Case p = 3. Let a ∈ A0̄ and D ∈ Der(A)1̄.

(aD)6 = a6D6 + (aD)5(a)D + 2a4D3(a)D(a)D2 + 2a5D4(a)D2.

However, one can show that

2a(aD)4(a)D2 = a4D2(a)2D2 + 2a4D(a)D3(a)D2 + 2a5D4(a)D2;

2(aD)(a)(aD)3(a)D2 = a4D3(a)D(a)D2;

2(aD)2(a)2D2 = 2a4D2(a)2D2.

It follows that

(aD)6 = a6D6 + (aD)5(a)D + 2a(aD)4(a)D2 + 2(aD)(a)(aD)3(a)D2 + 2(aD)2(a)2D2.

We therefore recover Eq. (8).
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Modules and representations

Let (A, L, ρ) be a restricted Lie-Rinehart superalgebra. A representation of
(A, L, ρ) is an A-module V = V0̄ ⊕ V1̄ together with a A-linear morphism of
restricted Lie superalgebras ϕ : L → End(V ) satisfying:

ϕ(x)(av) = (−1)|x||a|aϕ(x)(v) + ρ(x)(a)v , ∀x ∈ L, ∀a ∈ A, ∀v ∈ V ,

ϕ(ax)p−1(av) = apϕ(x)p−1(v) + ρ(ax)p−1(a)v , ∀x ∈ L0̄, ∀a ∈ A0̄, ∀v ∈ V ,

ϕ(ax)2p−1(av) = a2pϕ(x)2p−1(v) + ρ(ax)2p−1(a)v

+

p−1∑
i=0

λiρ(ax)
i (a)ρ(ax)2p−2−i (a)ϕ(x)(v), ∀a ∈ A0̄, ∀x ∈ L1̄ ∀v ∈ V ,

where the coefficients λi are defined as before. Such a pair (ϕ,V ) is called a
restricted Lie-Rinehart module.
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Semi-direct product

Proposition

Let
(
L, [−, −], (−)[p|2p]) be a restricted Lie superalgebra and let (ϕ,V ) be a restricted

representation. Then, L⋊ V is a restricted Lie superalgebra with the bracket[
(x + v), (y + w)

]
⋊
:= [x , y ] + ϕ(x)(w) − (−1)|y||v|ϕ(y)(v), ∀ x , y ∈ L, ∀ v ,w ∈ V

and with a p|2p-map (−)[p|2p]⋊ : L⋊ V → (L⋊ V )0̄ satisfying

(ei + vj)
[p]⋊ = e

[p]
i + ϕ(ei )

p−1(vj),

where (ei )i forms a basis of L0̄ and (vj)j a basis of V0̄.

Theorem
Let (A, L, ρ) be a restricted Lie superalgebra and let (ϕ,V ) a representation. Suppose
that the center of the restricted Lie superalgebra L⋊V is trivial. Then, (A, L⋊V , ρ̃) is a
restricted Lie-Rinehart superalgebra, with ρ̃(x + v) = ρ(x), ∀ x + v ∈ L⋊ V .
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The universal enveloping algebra, ordinary case

Let (A, L, ρ) be a Lie-Rinehart superalgebra. The superspace A ⊕ L, is a Lie
superalgebra with the bracket

[a+ x , b + y ] = [x , y ] + ρ(x)(b) − (−1)|a||y |ρ(y)(a), ∀a+ x , b + y ∈ A ⊕ L.

We note the resulting Lie superalgebra by A⋊ L.

Denote by U+(A⋊ L) the subspace of U(A⋊ L) spanned by i(A⋊ L) where
i : A⋊ L → U(A⋊ L) is the (even) injection.

The universal enveloping algebra of the Lie-Rinehart superalgebra (A, L, ρ) is
defined by

U(A, L) = U+(A⋊ L)/J,

where
J =

〈
i(a)i(b + x) − i(a(b + x)), a, b ∈ A, x ∈ L

〉
.
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The universal enveloping algebra, restricted case

Let (A, L, ρ) be a restricted Lie-Rinehart superalgebra. Recall that
U(A, L) = U+(A⋊ L)/J, where

J =
〈
i(a)i(b + x) − i(a(b + x)), a, b ∈ A, x ∈ L

〉
.

Consider

π1 : U
+(A⋊ L) → U(A, L) = U+(A⋊ L)/J the projection;

ιA : A → U(A, L) and ιL : L → U(A, L) the natural maps;

We define the restricted universal enveloping algebra of (A, L, ρ) by

Up(A, L) := U(A, L)/
〈
π1 ◦ i(x [p]) − (π1 ◦ i(x))p, x ∈ L0̄

〉
.

π2 : U(A, L) → Up(A, L) the projection;

iA = π2 ◦ ιA and iL = π2 ◦ ιL.

For all a ∈ A and all x ∈ L, we have

iA(a)iL(x) = iL(ax); iA
(
ρ(x)(a)

)
= iL(x)iA(a) − (−1)|a||x|iA(a)iL(x).
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The universal enveloping algebra, restricted case
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The universal enveloping algebra, restricted case

Universal property

B an associative superalgebra,

jA : A → B an even morphism of associative superalgebras,

jL : L → B an even morphism of restricted Lie superalgebras,

satisfying for all a ∈ A and all x ∈ L the conditions

jL(ax) = jA(a)jL(x); and jA
(
ρ(x)(a)

)
= jL(x)jA(a) − (−1)|a||x|jA(a)jL(x).

Then, there exists a unique morphism of associative superalgebras
ψ : Up(A, L) → B such that ψ ◦ iL = jL and ψ ◦ iA = jA.
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Thank you for your attention

Main reference:

S. Bouarroudj, Q. Ehret, A. Makhlouf, N. Shyntas
The Superization of Hochschild’s Lemma and Restricted Lie-Rinehart
Superalgebras, arXiv:2511.18372.
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