

The superization of Hochschild's Lemma and restricted Lie-Rinehart superalgebras

Quentin Ehret

Winter Mathematics Research International Workshop
Lie Theory and Related Areas
Sultan Qaboos University, Muscat, Oman

Joint work with
Sofiane Bouarroudj (*NYU Abu Dhabi*)
Abdenacer Makhlouf (*Haute-Alsace University, France*)
Nurtas Shyntas (*NYU Abu Dhabi*)

جامعة نيويورك أبوظبي

Outline of the talk

- 1 Lie-Rinehart (super)algebras
- 2 Restricted Lie algebras, restricted Lie-Rinehart algebras
- 3 The superization of Hochschild's Lemma
- 4 Modules, semi-direct product, universal enveloping algebra

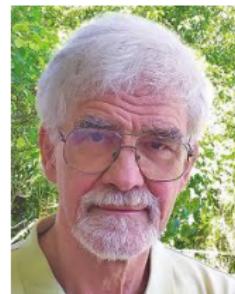
Lie-Rinehart algebras: definition

J. Herz (1953) - “pseudo-algèbre de Lie”;

R. Palais (1961) - “ d -Lie ring”;

G. Rinehart (1963) - “ (R, A) -Lie algebras”;

Differential form on general commutative algebras, Trans. AMS 108



J. Huebschmann (1990) - “Lie-Rinehart algebra”.

Poisson cohomology and quantization, J. Reine Angew. Math. 408

Johannes Huebschmann

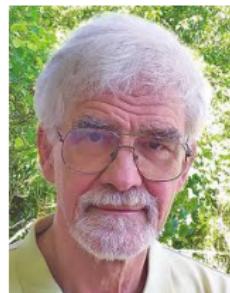
Lie-Rinehart algebras: definition

J. Herz (1953) - “pseudo-algèbre de Lie”;

R. Palais (1961) - “ d -Lie ring”;

G. Rinehart (1963) - “ (R, A) -Lie algebras”;

Differential form on general commutative algebras, Trans. AMS 108



J. Huebschmann (1990) - “Lie-Rinehart algebra”.

Johannes Huebschmann

Poisson cohomology and quantization, J. Reine Angew. Math. 408

Definition

A **Lie-Rinehart algebra** is a triple (A, L, ρ) , where

- A is an associative commutative algebra;
- $(L, [-, -])$ is a Lie algebra that is also an A -module;
- $\rho : L \rightarrow \text{Der}(A)$ is an A -linear Lie algebras morphism satisfying the *Leibniz identity*

$$[x, ay] = a[x, y] + \rho(x)(a)y, \quad \forall a \in A, \forall x, y \in L.$$

Lie-Rinehart algebras: examples

- Let A be an associative commutative algebra. Then, $\text{Der}(A)$ is a Lie algebra with the commutator bracket and the triple $(A, \text{Der}(A), \text{id})$ is a Lie-Rinehart algebra.

Lie-Rinehart algebras: examples

- Let A be an associative commutative algebra. Then, $\text{Der}(A)$ is a Lie algebra with the commutator bracket and the triple $(A, \text{Der}(A), \text{id})$ is a Lie-Rinehart algebra.
- (Huebschmann) Let $(A, \{-, -\})$ be a Poisson algebra with unit. Let $\Omega(A)$ be its module of Kähler differentials:

$$\Omega(A) = \left\{ da, \ a \in A, \ d(a + b) = da + db, \ d(ab) = dab + adb, \ d1 = 0 \right\}.$$

Lie-Rinehart algebras: examples

- Let A be an associative commutative algebra. Then, $\text{Der}(A)$ is a Lie algebra with the commutator bracket and the triple $(A, \text{Der}(A), \text{id})$ is a Lie-Rinehart algebra.
- (Huebschmann) Let $(A, \{-, -\})$ be a Poisson algebra with unit. Let $\Omega(A)$ be its module of Kähler differentials:

$$\Omega(A) = \left\{ da, \ a \in A, \ d(a + b) = da + db, \ d(ab) = dab + adb, \ d1 = 0 \right\}.$$

$$[xdu, ydv] := x\{u, y\}dv + y\{x, v\}du + xyd\{u, v\}, \quad \forall x, y, u, v \in A.$$

Lie-Rinehart algebras: examples

- Let A be an associative commutative algebra. Then, $\text{Der}(A)$ is a Lie algebra with the commutator bracket and the triple $(A, \text{Der}(A), \text{id})$ is a Lie-Rinehart algebra.
- (Huebschmann) Let $(A, \{-, -\})$ be a Poisson algebra with unit. Let $\Omega(A)$ be its module of Kähler differentials:

$$\Omega(A) = \left\{ da, \ a \in A, \ d(a + b) = da + db, \ d(ab) = dab + adb, \ d1 = 0 \right\}.$$

$$[xdu, ydv] := x\{u, y\}dv + y\{x, v\}du + xyd\{u, v\}, \quad \forall x, y, u, v \in A.$$

$$\rho(xdu) = x\{u, -\}.$$

Then $(A, \Omega(A), \rho)$ is a Lie-Rinehart algebra.

Lie-Rinehart algebras: examples

- Let A be an associative commutative algebra. Then, $\text{Der}(A)$ is a Lie algebra with the commutator bracket and the triple $(A, \text{Der}(A), \text{id})$ is a Lie-Rinehart algebra.
- (Huebschmann) Let $(A, \{-, -\})$ be a Poisson algebra with unit. Let $\Omega(A)$ be its module of Kähler differentials:

$$\Omega(A) = \left\{ da, \ a \in A, \ d(a + b) = da + db, \ d(ab) = dab + adb, \ d1 = 0 \right\}.$$

$$[xdu, ydv] := x\{u, y\}dv + y\{x, v\}du + xyd\{u, v\}, \quad \forall x, y, u, v \in A.$$

$$\rho(xdu) = x\{u, -\}.$$

Then $(A, \Omega(A), \rho)$ is a Lie-Rinehart algebra.

- Universal enveloping algebra** (Rinehart 1963, Huebschmann 1990).

$$U(A, L, \rho) = U^+(A \rtimes L) / \langle i(a)i(b+x) - i(a(b+x)), \ a, b \in A, \ x \in L \rangle$$

Lie-Rinehart superalgebras

S. Chemla (*Manuscripta Math.* **87**, 1995),

C. Roger (*Bull. Soc. Roy. Sci. Liège*, **89**, 2020),

QE.- A. Makhlouf (*Commun. Math.* **30**, 2022),

T. Lamkin (*Algebr. Represent. Theor.* **28**, 2025)

Lie-Rinehart superalgebras

S. Chemla (*Manuscripta Math.* **87**, 1995),

C. Roger (*Bull. Soc. Roy. Sci. Liège*, **89**, 2020),

QE.- A. Makhlouf (*Commun. Math.* **30**, 2022),

T. Lamkin (*Algebr. Represent. Theor.* **28**, 2025)

Definition

A **Lie-Rinehart superalgebra** is a triple (A, L, ρ) , where

- A is an associative supercommutative superalgebra;
- $(L, [-, -])$ is a Lie superalgebra that is also an A -module;
- $\rho : L \rightarrow \text{Der}(A)$ is an A -linear Lie superalgebras morphism satisfying the *Leibniz identity*

$$[x, ay] = (-1)^{|a||x|} a[x, y] + \rho(x)(a)y, \quad \forall a \in A, \forall x, y \in L.$$

Restricted Lie algebras

From now on, \mathbb{K} is a field of characteristic $p \geq 3$.

Restricted Lie algebras

From now on, \mathbb{K} is a field of characteristic $p \geq 3$.

Definition (Jacobson, *Restricted Lie algebras of characteristic p* , Trans. AMS 50, 1941)

A **restricted Lie algebra** is a Lie algebra L equipped with a map $(-)^{[p]} : L \longrightarrow L$ satisfying for all $x, y \in L$ and for all $\lambda \in \mathbb{K}$:

$$① (\lambda x)^{[p]} = \lambda^p x^{[p]};$$

$$② [x, y^{[p]}] = [[\cdots [x, \overbrace{y, y}], \cdots, y];$$

$$③ (x + y)^{[p]} = x^{[p]} + y^{[p]} + \sum_{i=1}^{p-1} s_i(x, y),$$

Nathan Jacobson (1910-1999)

with $s_i(x, y)$ the coefficient of Z^{i-1} in $\text{ad}_{Zx+y}^{p-1}(x)$. Such a map $(-)^{[p]} : L \longrightarrow L$ is called p -map.

Restricted Lie algebras

From now on, \mathbb{K} is a field of characteristic $p \geq 3$.

Definition (Jacobson, *Restricted Lie algebras of characteristic p*, Trans. AMS 50, 1941)

A **restricted Lie algebra** is a Lie algebra L equipped with a map $(-)^{[p]} : L \longrightarrow L$ satisfying for all $x, y \in L$ and for all $\lambda \in \mathbb{K}$:

$$① (\lambda x)^{[p]} = \lambda^p x^{[p]};$$

$$② [x, y^{[p]}] = [[\cdots [x, \overbrace{y, y}], \cdots, y];$$

$$③ (x + y)^{[p]} = x^{[p]} + y^{[p]} + \sum_{i=1}^{p-1} s_i(x, y),$$

Nathan Jacobson (1910-1999)

with $s_i(x, y)$ the coefficient of Z^{i-1} in $\text{ad}_{Zx+y}^{p-1}(x)$. Such a map $(-)^{[p]} : L \longrightarrow L$ is called p -map.

Example: any associative algebra A with $[a, b] = ab - ba$ and $a^{[p]} = a^p$, $\forall a, b \in A$.

Restricted Lie algebras

Example

For any associative algebra A , $\text{Der}(A)$ is a restricted Lie algebra with the commutator and the p -th power.

Restricted Lie algebras

Example

For any associative algebra A , $\text{Der}(A)$ is a restricted Lie algebra with the commutator and the p -th power.

Theorem (Jacobson)

Let L be a Lie algebra. Let $(e_j)_{j \in J}$ be a basis of L , and let the elements $f_j \in L$ be such that $(\text{ad}_{e_j})^p = \text{ad}_{f_j}$. Then, there exists exactly one p -mapping $(-)^{[p]} : L \rightarrow L$ such that

$$e_j^{[p]} = f_j \quad \text{for all } j \in J.$$

Towards restricted Lie-Rinehart algebras

- Earlier instances go back to Hochschild (1955).

Simple algebras with purely inseparable splitting fields of exponent 1, Trans. AMS **79**.

Towards restricted Lie-Rinehart algebras

- Earlier instances go back to Hochschild (1955).

Simple algebras with purely inseparable splitting fields of exponent 1, Trans. AMS 79.

Hochschild's Lemma

- ▶ U : associative algebra over the field of integers modulo p
- ▶ $V \subset U$: commutative subalgebra
- ▶ $D_u(w) = uw - wu, \forall u, w \in U.$

Then, for all $u \in U$ such that $D_u(V) \subset V$, we have

$$(vu)^p = v^p u^p + D_{vu}^{p-1}(v)u, \forall v \in V.$$

Towards restricted Lie-Rinehart algebras

- Earlier instances go back to Hochschild (1955).

Simple algebras with purely inseparable splitting fields of exponent 1, Trans. AMS 79.

Hochschild's Lemma

- ▶ U : associative algebra over the field of integers modulo p
- ▶ $V \subset U$: commutative subalgebra
- ▶ $D_u(w) = uw - wu, \forall u, w \in U.$

Then, for all $u \in U$ such that $D_u(V) \subset V$, we have

$$(vu)^p = v^p u^p + D_{vu}^{p-1}(v)u, \forall v \in V.$$

Let (A, L, ρ) be a Lie-Rinehart algebra. Applying the Lemma with U the universal enveloping algebra of (A, L, ρ) , and $V = A$, we obtain

$$(ax)^p = a^p x^p + \rho(ax)^{p-1}(a)x, \quad \forall a \in A, \forall x \in L.$$

Towards restricted Lie-Rinehart algebras

- Earlier instances go back to Hochschild (1955).

Simple algebras with purely inseparable splitting fields of exponent 1, Trans. AMS 79.

Hochschild's Lemma

- ▶ U : associative algebra over the field of integers modulo p
- ▶ $V \subset U$: commutative subalgebra
- ▶ $D_u(w) = uw - wu, \forall u, w \in U.$

Then, for all $u \in U$ such that $D_u(V) \subset V$, we have

$$(vu)^p = v^p u^p + D_{vu}^{p-1}(v)u, \forall v \in V.$$

Let (A, L, ρ) be a Lie-Rinehart algebra. Applying the Lemma with U the universal enveloping algebra of (A, L, ρ) , and $V = A$, we obtain

$$(ax)^p = a^p x^p + \rho(ax)^{p-1}(a)x, \quad \forall a \in A, \forall x \in L.$$

- “Modern version”, P. Schauenburg (2016).

Let (A, L, ρ) be a Lie-Rinehart algebra and let (ϕ, M) be a Lie-Rinehart module.

Then, we have

$$\phi(ax)^p = a^p \phi(x)^p + \rho(ax)^{p-1}(a)\phi(x).$$

Restricted Lie-Rinehart algebra: definition

- D. Rumynin, *Duality for Hopf algebroids*, J. Algebra **223** (2000);
- I. Dokas, *Cohomology of restricted Lie-Rinehart algebras and the Brauer group*, Adv. Math. **231** (2012).

Restricted Lie-Rinehart algebra: definition

- D. Rumynin, *Duality for Hopf algebroids*, J. Algebra **223** (2000);
- I. Dokas, *Cohomology of restricted Lie-Rinehart algebras and the Brauer group*, Adv. Math. **231** (2012).

A Lie-Rinehart algebra (A, L, ρ) is called *restricted* if L is a restricted with a p -map $(-)^{[p]} : L \rightarrow L$, and if moreover, we have

$$(ax)^{[p]} = a^p x^{[p]} + \rho(ax)^{p-1}(a)x, \quad \forall a \in A, \quad \forall x \in L. \quad (1)$$

Restricted Lie-Rinehart algebra: definition

- D. Rumynin, *Duality for Hopf algebroids*, J. Algebra **223** (2000);
- I. Dokas, *Cohomology of restricted Lie-Rinehart algebras and the Brauer group*, Adv. Math. **231** (2012).

A Lie-Rinehart algebra (A, L, ρ) is called *restricted* if L is a restricted with a p -map $(-)^{[p]} : L \rightarrow L$, and if moreover, we have

$$(ax)^{[p]} = a^p x^{[p]} + \rho(ax)^{p-1}(a)x, \quad \forall a \in A, \forall x \in L. \quad (1)$$

Our leading example (Dokas). Let A be an associative commutative algebra. Then, $(A, \text{Der}(A), \text{id})$ is a restricted Lie-Rinehart algebra.

Proof: Hochschild's Lemma.

Towards the superization

- **Goal:** to define the notion of restricted Lie-Rinehart superalgebra;

Towards the superization

- **Goal:** to define the notion of restricted Lie-Rinehart superalgebra;
- For any associative supercommutative superalgebra A , the triple $(A, \text{Der}(A), \text{id})$ must provide an example.

Towards the superization

- **Goal:** to define the notion of restricted Lie-Rinehart superalgebra;
- For any associative supercommutative superalgebra A , the triple $(A, \text{Der}(A), \text{id})$ must provide an example.
- **Idea:** to prove a super-version of the Hochschild's Lemma.

Towards the superization

- **Goal:** to define the notion of restricted Lie-Rinehart superalgebra;
- For any associative supercommutative superalgebra A , the triple $(A, \text{Der}(A), \text{id})$ must provide an example.
- **Idea:** to prove a super-version of the Hochschild's Lemma.
- **Strategy:** generalize the proof of Schauenburg to the supercase.

Superization of Hochschild's Lemma

Theorem (Bouarroudj, E., Makhlouf, Shyntas)

Let (A, L, ρ) be a Lie-Rinehart superalgebra over a field \mathbb{K} of characteristic $p \geq 3$ and let (ϕ, M) be a Lie-Rinehart module. Then, we have

$$\phi(ax)^p = a^p \phi(x)^p + \rho(ax)^{p-1}(a) \phi(x), \quad \forall a \in A_{\bar{0}}, \forall x \in L_{\bar{0}}; \quad (2)$$

$$\begin{aligned} \phi(ax)^{2p} &= a^{2p} \phi(x)^{2p} + \rho(ax)^{2p-1}(a) \phi(x) \\ &+ \sum_{i=0}^{p-1} \lambda_i \rho(ax)^i(a) \rho(ax)^{2p-2-i}(a) \phi(x)^2, \end{aligned} \quad \forall a \in A_{\bar{0}}, \forall x \in L_{\bar{1}}; \quad (3)$$

$$\phi(ax)^{2p} = 0, \quad \forall a \in A_{\bar{1}}, \forall x \in L_{\bar{0}}; \quad (4)$$

$$\phi(ax)^p = a(\rho(x)(a))^{p-1} \phi(x), \quad \forall a \in A_{\bar{1}}, \forall x \in L_{\bar{1}}, \quad (5)$$

where the coefficients λ_i are given by

$$\lambda_i = \begin{cases} 2(-1)^{\frac{i}{2}} & \text{if } i \text{ is even, } 0 \leq i < p-1; \\ 2(-1)^{\frac{i-1}{2}} & \text{if } i \text{ is odd, } 1 \leq i < p-1; \\ (-1)^{\frac{p-1}{2}} & \text{if } i = p-1. \end{cases} \quad (6)$$

Superization of Hochschild's Lemma

Elements of the proof.

Consider the \mathbb{Z}_2 -graded ring $V = \mathbb{Z}[x_0, x_1, x_2, \dots]$, such that $|x_{i+1}| = |x_i| + |\delta|$, where δ is the derivation of V defined by $\delta(x_i) = x_{i+1}$.

Superization of Hochschild's Lemma

Elements of the proof.

Consider the \mathbb{Z}_2 -graded ring $V = \mathbb{Z}[x_0, x_1, x_2, \dots]$, such that $|x_{i+1}| = |x_i| + |\delta|$, where δ is the derivation of V defined by $\delta(x_i) = x_{i+1}$.

Key point: study the polynomials $\Gamma_{k,j}$ defined by $\Gamma_{1,1} = x_0$ and

$$\Gamma_{k+1,j} = \begin{cases} x_0 \delta(\Gamma_{k,1}), & j = 1 \\ x_0 \delta(\Gamma_{k,j}) + (-1)^{|\delta| |\Gamma_{k,j-1}|} x_0 \Gamma_{k,j-1}, & j = 2, \dots, k \\ x_0 \Gamma_{k,k}, & j = k+1. \end{cases}$$

Superization of Hochschild's Lemma

Elements of the proof.

Consider the \mathbb{Z}_2 -graded ring $V = \mathbb{Z}[x_0, x_1, x_2, \dots]$, such that $|x_{i+1}| = |x_i| + |\delta|$, where δ is the derivation of V defined by $\delta(x_i) = x_{i+1}$.

Key point: study the polynomials $\Gamma_{k,j}$ defined by $\Gamma_{1,1} = x_0$ and

$$\Gamma_{k+1,j} = \begin{cases} x_0 \delta(\Gamma_{k,1}), & j = 1 \\ x_0 \delta(\Gamma_{k,j}) + (-1)^{|\delta| |\Gamma_{k,j-1}|} x_0 \Gamma_{k,j-1}, & j = 2, \dots, k \\ x_0 \Gamma_{k,k}, & j = k+1. \end{cases}$$

Proposition (Case x_0 even, δ odd)

$$\Gamma_{2p,j} \equiv 0 \pmod{p}, \quad \text{for all } 3 \leq j \leq 2p-1.$$

Superization of Hochschild's Lemma

Elements of the proof.

Consider the \mathbb{Z}_2 -graded ring $V = \mathbb{Z}[x_0, x_1, x_2, \dots]$, such that $|x_{i+1}| = |x_i| + |\delta|$, where δ is the derivation of V defined by $\delta(x_i) = x_{i+1}$.

Key point: study the polynomials $\Gamma_{k,j}$ defined by $\Gamma_{1,1} = x_0$ and

$$\Gamma_{k+1,j} = \begin{cases} x_0 \delta(\Gamma_{k,1}), & j = 1 \\ x_0 \delta(\Gamma_{k,j}) + (-1)^{|\delta| |\Gamma_{k,j-1}|} x_0 \Gamma_{k,j-1}, & j = 2, \dots, k \\ x_0 \Gamma_{k,k}, & j = k+1. \end{cases}$$

Proposition (Case x_0 even, δ odd)

$$\Gamma_{2p,j} \equiv 0 \pmod{p}, \quad \text{for all } 3 \leq j \leq 2p-1.$$

Let (A, L, ρ) be a Lie-Rinehart superalgebra. Applying a well-chosen map $f : V \rightarrow A$ gives the result. \square

Restricted Lie-Rinehart superalgebras

Definition (Restricted Lie superalgebra)

A **restricted Lie superalgebra** is a Lie superalgebra $L = L_{\bar{0}} \oplus L_{\bar{1}}$ such that

- ① The even part $L_{\bar{0}}$ is a restricted Lie algebra;
- ② The odd part $L_{\bar{1}}$ is a Lie $L_{\bar{0}}$ -module;
- ③ $[x, y^{[p]}] = [[\dots [x, \overbrace{y, y, \dots, y}^{p \text{ terms}}], y], \dots, y], \quad \forall x \in L_{\bar{1}}, y \in L_{\bar{0}}.$

Restricted Lie-Rinehart superalgebras

Definition (Restricted Lie superalgebra)

A **restricted Lie superalgebra** is a Lie superalgebra $L = L_{\bar{0}} \oplus L_{\bar{1}}$ such that

① The even part $L_{\bar{0}}$ is a restricted Lie algebra;

② The odd part $L_{\bar{1}}$ is a Lie $L_{\bar{0}}$ -module;

③ $[x, y^{[p]}] = [[\dots [x, \overbrace{y, y, \dots, y}^{p \text{ terms}}], y], \dots, y], \quad \forall x \in L_{\bar{1}}, y \in L_{\bar{0}}.$

We can define a map $(\cdot)^{[2p]} : L_{\bar{1}} \rightarrow L_{\bar{0}}$ by

$$x^{[2p]} = (x^2)^{[p]}, \text{ with } x^2 = \frac{1}{2}[x, x], \quad x \in L_{\bar{1}}.$$

Restricted Lie-Rinehart superalgebras

Definition (Restricted Lie superalgebra)

A **restricted Lie superalgebra** is a Lie superalgebra $L = L_{\bar{0}} \oplus L_{\bar{1}}$ such that

- ① The even part $L_{\bar{0}}$ is a restricted Lie algebra;
- ② The odd part $L_{\bar{1}}$ is a Lie $L_{\bar{0}}$ -module;
- ③ $[x, y^{[p]}] = [[\dots [x, \overbrace{y, y, \dots, y}^{p \text{ terms}}], y], \dots, y], \forall x \in L_{\bar{1}}, y \in L_{\bar{0}}.$

We can define a map $(\cdot)^{[2p]} : L_{\bar{1}} \rightarrow L_{\bar{0}}$ by

$$x^{[2p]} = (x^2)^{[p]}, \text{ with } x^2 = \frac{1}{2}[x, x], x \in L_{\bar{1}}.$$

Examples.

- associative superalgebras;
- $\text{Der}(A)$ with A associative superalgebra.

Restricted Lie-Rinehart superalgebras

A Lie-Rinehart superalgebra (A, L, ρ) is called *restricted* if the Lie superalgebra L is restricted and if in addition, we have

$$(ax)^{[p]} = a^p x^{[p]} + \rho(ax)^{p-1}(a)x, \quad \forall a \in A_{\bar{0}}, \forall x \in L_{\bar{0}}; \quad (7)$$

$$\begin{aligned} (ax)^{[2p]} &= a^{2p} x^{[2p]} + \rho(ax)^{2p-1}(a)x \\ &+ \sum_{i=0}^{p-1} \lambda_i \rho(ax)^i(a) \rho(ax)^{2p-2-i}(a)x^2, \quad \forall a \in A_{\bar{0}}, \forall x \in L_{\bar{1}}; \end{aligned} \quad (8)$$

$$(ax)^{[2p]} = 0, \quad \forall a \in A_{\bar{1}}, \forall x \in L_{\bar{0}}; \quad (9)$$

$$(ax)^{[p]} = a(\rho(x)(a))^{p-1}x, \quad \forall a \in A_{\bar{1}}, \forall x \in L_{\bar{1}}; \quad (10)$$

where the coefficients λ_i are given by

$$\lambda_i = \begin{cases} 2(-1)^{\frac{i}{2}} & \text{if } i \text{ is even, } 0 \leq i < p-1; \\ 2(-1)^{\frac{i-1}{2}} & \text{if } i \text{ is odd, } 1 \leq i < p-1; \\ (-1)^{\frac{p-1}{2}} & \text{if } i = p-1. \end{cases}$$

and $x^2 := \frac{1}{2}[x, x]$.

Restricted Lie-Rinehart superalgebras

Example

Let A be an associative supercommutative superalgebra. Then, $(A, \text{Der}(A), \text{id})$ is a restricted Lie-Rinehart superalgebra.

Restricted Lie-Rinehart superalgebras

Example

Let A be an associative supercommutative superalgebra. Then, $(A, \text{Der}(A), \text{id})$ is a restricted Lie-Rinehart superalgebra.

Proof. Apply the superized Hochschild's Lemma to the representation (id, A) .

Restricted Lie-Rinehart superalgebras

Example

Let A be an associative supercommutative superalgebra. Then, $(A, \text{Der}(A), \text{id})$ is a restricted Lie-Rinehart superalgebra.

Proof. Apply the superized Hochschild's Lemma to the representation (id, A) .

Case $p = 3$. Let $a \in A_{\bar{0}}$ and $D \in \text{Der}(A)_{\bar{1}}$.

$$(aD)^6 = a^6 D^6 + (aD)^5(a)D + 2a^4 D^3(a)D(a)D^2 + 2a^5 D^4(a)D^2.$$

Restricted Lie-Rinehart superalgebras

Example

Let A be an associative supercommutative superalgebra. Then, $(A, \text{Der}(A), \text{id})$ is a restricted Lie-Rinehart superalgebra.

Proof. Apply the superized Hochschild's Lemma to the representation (id, A) .

Case $p = 3$. Let $a \in A_{\bar{0}}$ and $D \in \text{Der}(A)_{\bar{1}}$.

$$(aD)^6 = a^6 D^6 + (aD)^5(a)D + 2a^4 D^3(a)D(a)D^2 + 2a^5 D^4(a)D^2.$$

However, one can show that

$$2a(aD)^4(a)D^2 = a^4 D^2(a)^2 D^2 + 2a^4 D(a)D^3(a)D^2 + 2a^5 D^4(a)D^2;$$

$$2(aD)(a)(aD)^3(a)D^2 = a^4 D^3(a)D(a)D^2;$$

$$2(aD)^2(a)^2 D^2 = 2a^4 D^2(a)^2 D^2.$$

Restricted Lie-Rinehart superalgebras

Example

Let A be an associative supercommutative superalgebra. Then, $(A, \text{Der}(A), \text{id})$ is a restricted Lie-Rinehart superalgebra.

Proof. Apply the superized Hochschild's Lemma to the representation (id, A) .

Case $p = 3$. Let $a \in A_{\bar{0}}$ and $D \in \text{Der}(A)_{\bar{1}}$.

$$(aD)^6 = a^6 D^6 + (aD)^5(a)D + 2a^4 D^3(a)D(a)D^2 + 2a^5 D^4(a)D^2.$$

However, one can show that

$$2a(aD)^4(a)D^2 = a^4 D^2(a)^2 D^2 + 2a^4 D(a)D^3(a)D^2 + 2a^5 D^4(a)D^2;$$

$$2(aD)(a)(aD)^3(a)D^2 = a^4 D^3(a)D(a)D^2;$$

$$2(aD)^2(a)^2 D^2 = 2a^4 D^2(a)^2 D^2.$$

It follows that

$$(aD)^6 = a^6 D^6 + (aD)^5(a)D + 2a(aD)^4(a)D^2 + 2(aD)(a)(aD)^3(a)D^2 + 2(aD)^2(a)^2 D^2.$$

We therefore recover Eq. (8).

Modules and representations

Let (A, L, ρ) be a restricted Lie-Rinehart superalgebra. A representation of (A, L, ρ) is an A -module $V = V_{\bar{0}} \oplus V_{\bar{1}}$ together with a A -linear morphism of restricted Lie superalgebras $\phi : L \rightarrow \text{End}(V)$ satisfying:

$$\phi(x)(av) = (-1)^{|x||a|} a\phi(x)(v) + \rho(x)(a)v, \quad \forall x \in L, \forall a \in A, \forall v \in V,$$

$$\phi(ax)^{p-1}(av) = a^p \phi(x)^{p-1}(v) + \rho(ax)^{p-1}(a)v, \quad \forall x \in L_{\bar{0}}, \forall a \in A_{\bar{0}}, \forall v \in V,$$

$$\begin{aligned} \phi(ax)^{2p-1}(av) &= a^{2p} \phi(x)^{2p-1}(v) + \rho(ax)^{2p-1}(a)v \\ &+ \sum_{i=0}^{p-1} \lambda_i \rho(ax)^i(a) \rho(ax)^{2p-2-i}(a) \phi(x)(v), \quad \forall a \in A_{\bar{0}}, \forall x \in L_{\bar{1}} \forall v \in V, \end{aligned}$$

where the coefficients λ_i are defined as before. Such a pair (ϕ, V) is called a *restricted Lie-Rinehart module*.

Semi-direct product

Proposition

Let $(L, [-, -], (-)^{[p|2p]})$ be a restricted Lie superalgebra and let (ϕ, V) be a restricted representation. Then, $L \rtimes V$ is a restricted Lie superalgebra with the bracket

$$[(x + v), (y + w)]_{\rtimes} := [x, y] + \phi(x)(w) - (-1)^{|y||v|} \phi(y)(v), \quad \forall x, y \in L, \forall v, w \in V$$

and with a $p|2p$ -map $(-)^{[p|2p]_{\rtimes}} : L \rtimes V \rightarrow (L \rtimes V)_{\bar{0}}$ satisfying

$$(e_i + v_j)^{[p]_{\rtimes}} = e_i^{[p]} + \phi(e_i)^{p-1}(v_j),$$

where $(e_i)_i$ forms a basis of $L_{\bar{0}}$ and $(v_j)_j$ a basis of $V_{\bar{0}}$.

Semi-direct product

Proposition

Let $(L, [-, -], (-)^{[p|2p]})$ be a restricted Lie superalgebra and let (ϕ, V) be a restricted representation. Then, $L \rtimes V$ is a restricted Lie superalgebra with the bracket

$$[(x + v), (y + w)]_{\rtimes} := [x, y] + \phi(x)(w) - (-1)^{|y||v|} \phi(y)(v), \quad \forall x, y \in L, \forall v, w \in V$$

and with a $p|2p$ -map $(-)^{[p|2p]_{\rtimes}} : L \rtimes V \rightarrow (L \rtimes V)_{\bar{0}}$ satisfying

$$(e_i + v_j)^{[p]_{\rtimes}} = e_i^{[p]} + \phi(e_i)^{p-1}(v_j),$$

where $(e_i)_i$ forms a basis of $L_{\bar{0}}$ and $(v_j)_j$ a basis of $V_{\bar{0}}$.

Theorem

Let (A, L, ρ) be a restricted Lie superalgebra and let (ϕ, V) a representation. Suppose that the center of the restricted Lie superalgebra $L \rtimes V$ is trivial. Then, $(A, L \rtimes V, \tilde{\rho})$ is a restricted Lie-Rinehart superalgebra, with $\tilde{\rho}(x + v) = \rho(x)$, $\forall x + v \in L \rtimes V$.

The universal enveloping algebra, ordinary case

Let (A, L, ρ) be a Lie-Rinehart superalgebra. The superspace $A \oplus L$, is a Lie superalgebra with the bracket

$$[a + x, b + y] = [x, y] + \rho(x)(b) - (-1)^{|a||y|} \rho(y)(a), \quad \forall a + x, b + y \in A \oplus L.$$

We note the resulting Lie superalgebra by $A \rtimes L$.

The universal enveloping algebra, ordinary case

Let (A, L, ρ) be a Lie-Rinehart superalgebra. The superspace $A \oplus L$, is a Lie superalgebra with the bracket

$$[a + x, b + y] = [x, y] + \rho(x)(b) - (-1)^{|a||y|} \rho(y)(a), \quad \forall a + x, b + y \in A \oplus L.$$

We note the resulting Lie superalgebra by $A \rtimes L$.

Denote by $U^+(A \rtimes L)$ the subspace of $U(A \rtimes L)$ spanned by $i(A \rtimes L)$ where $i : A \rtimes L \rightarrow U(A \rtimes L)$ is the (even) injection.

The universal enveloping algebra, ordinary case

Let (A, L, ρ) be a Lie-Rinehart superalgebra. The superspace $A \oplus L$, is a Lie superalgebra with the bracket

$$[a + x, b + y] = [x, y] + \rho(x)(b) - (-1)^{|a||y|} \rho(y)(a), \quad \forall a + x, b + y \in A \oplus L.$$

We note the resulting Lie superalgebra by $A \rtimes L$.

Denote by $U^+(A \rtimes L)$ the subspace of $U(A \rtimes L)$ spanned by $i(A \rtimes L)$ where $i : A \rtimes L \rightarrow U(A \rtimes L)$ is the (even) injection.

The universal enveloping algebra of the Lie-Rinehart superalgebra (A, L, ρ) is defined by

$$U(A, L) = U^+(A \rtimes L)/J,$$

where

$$J = \left\langle i(a)i(b + x) - i(a(b + x)), \ a, b \in A, \ x \in L \right\rangle.$$

The universal enveloping algebra, restricted case

Let (A, L, ρ) be a *restricted* Lie-Rinehart superalgebra. Recall that $U(A, L) = U^+(A \rtimes L)/J$, where

$$J = \left\langle i(a)i(b+x) - i(a(b+x)), \ a, b \in A, \ x \in L \right\rangle.$$

The universal enveloping algebra, restricted case

Let (A, L, ρ) be a *restricted* Lie-Rinehart superalgebra. Recall that $U(A, L) = U^+(A \rtimes L)/J$, where

$$J = \left\langle i(a)i(b+x) - i(a(b+x)), \ a, b \in A, \ x \in L \right\rangle.$$

Consider

- $\pi_1 : U^+(A \rtimes L) \rightarrow U(A, L) = U^+(A \rtimes L)/J$ the projection;

The universal enveloping algebra, restricted case

Let (A, L, ρ) be a *restricted* Lie-Rinehart superalgebra. Recall that $U(A, L) = U^+(A \rtimes L)/J$, where

$$J = \left\langle i(a)i(b+x) - i(a(b+x)), \ a, b \in A, \ x \in L \right\rangle.$$

Consider

- $\pi_1 : U^+(A \rtimes L) \rightarrow U(A, L) = U^+(A \rtimes L)/J$ the projection;
- $\iota_A : A \rightarrow U(A, L)$ and $\iota_L : L \rightarrow U(A, L)$ the natural maps;

The universal enveloping algebra, restricted case

Let (A, L, ρ) be a *restricted* Lie-Rinehart superalgebra. Recall that $U(A, L) = U^+(A \rtimes L)/J$, where

$$J = \left\langle i(a)i(b+x) - i(a(b+x)), \ a, b \in A, \ x \in L \right\rangle.$$

Consider

- $\pi_1 : U^+(A \rtimes L) \rightarrow U(A, L) = U^+(A \rtimes L)/J$ the projection;
- $\iota_A : A \rightarrow U(A, L)$ and $\iota_L : L \rightarrow U(A, L)$ the natural maps;

We define the restricted universal enveloping algebra of (A, L, ρ) by

$$U_p(A, L) := U(A, L)/\langle \pi_1 \circ i(x^{[p]}) - (\pi_1 \circ i(x))^p, \ x \in L_{\bar{0}} \rangle.$$

The universal enveloping algebra, restricted case

Let (A, L, ρ) be a *restricted* Lie-Rinehart superalgebra. Recall that $U(A, L) = U^+(A \rtimes L)/J$, where

$$J = \left\langle i(a)i(b+x) - i(a(b+x)), \ a, b \in A, \ x \in L \right\rangle.$$

Consider

- $\pi_1 : U^+(A \rtimes L) \rightarrow U(A, L) = U^+(A \rtimes L)/J$ the projection;
- $\iota_A : A \rightarrow U(A, L)$ and $\iota_L : L \rightarrow U(A, L)$ the natural maps;

We define the restricted universal enveloping algebra of (A, L, ρ) by

$$U_p(A, L) := U(A, L)/\langle \pi_1 \circ i(x^{[p]}) - (\pi_1 \circ i(x))^p, \ x \in L_{\bar{0}} \rangle.$$

- $\pi_2 : U(A, L) \rightarrow U_p(A, L)$ the projection;

The universal enveloping algebra, restricted case

Let (A, L, ρ) be a *restricted* Lie-Rinehart superalgebra. Recall that $U(A, L) = U^+(A \rtimes L)/J$, where

$$J = \left\langle i(a)i(b+x) - i(a(b+x)), \ a, b \in A, \ x \in L \right\rangle.$$

Consider

- $\pi_1 : U^+(A \rtimes L) \rightarrow U(A, L) = U^+(A \rtimes L)/J$ the projection;
- $\iota_A : A \rightarrow U(A, L)$ and $\iota_L : L \rightarrow U(A, L)$ the natural maps;

We define the restricted universal enveloping algebra of (A, L, ρ) by

$$U_p(A, L) := U(A, L)/\langle \pi_1 \circ i(x^{[p]}) - (\pi_1 \circ i(x))^p, \ x \in L_{\bar{0}} \rangle.$$

- $\pi_2 : U(A, L) \rightarrow U_p(A, L)$ the projection;
- $i_A = \pi_2 \circ \iota_A$ and $i_L = \pi_2 \circ \iota_L$.

The universal enveloping algebra, restricted case

Let (A, L, ρ) be a *restricted* Lie-Rinehart superalgebra. Recall that $U(A, L) = U^+(A \rtimes L)/J$, where

$$J = \left\langle i(a)i(b+x) - i(a(b+x)), \ a, b \in A, \ x \in L \right\rangle.$$

Consider

- $\pi_1 : U^+(A \rtimes L) \rightarrow U(A, L) = U^+(A \rtimes L)/J$ the projection;
- $\iota_A : A \rightarrow U(A, L)$ and $\iota_L : L \rightarrow U(A, L)$ the natural maps;

We define the restricted universal enveloping algebra of (A, L, ρ) by

$$U_p(A, L) := U(A, L)/\langle \pi_1 \circ i(x^{[p]}) - (\pi_1 \circ i(x))^p, \ x \in L_{\bar{0}} \rangle.$$

- $\pi_2 : U(A, L) \rightarrow U_p(A, L)$ the projection;
- $i_A = \pi_2 \circ \iota_A$ and $i_L = \pi_2 \circ \iota_L$.

For all $a \in A$ and all $x \in L$, we have

$$i_A(a)i_L(x) = i_L(ax); \quad i_A(\rho(x)(a)) = i_L(x)i_A(a) - (-1)^{|a||x|}i_A(a)i_L(x).$$

The universal enveloping algebra, restricted case

$$U_p(A, L) := U(A, L) / \langle \pi_1 \circ i(x^{[p]}) - (\pi_1 \circ i(x))^p, \ x \in L_{\bar{0}} \rangle.$$

The universal enveloping algebra, restricted case

$$U_p(A, L) := U(A, L) / \langle \pi_1 \circ i(x^{[p]}) - (\pi_1 \circ i(x))^p, \ x \in L_{\bar{0}} \rangle.$$

$$\begin{array}{ccccc} A \oplus L & \xrightarrow{\varphi} & & & B \\ \searrow i & & \nearrow \widetilde{\varphi} & & \uparrow \psi \\ & U^+(A \rtimes L) & & & \\ & \downarrow \pi_1 & & \nearrow \widetilde{\psi} & \\ U(A, L) & \xrightarrow{\pi_2} & U_p(A, L) & & \end{array}$$

The universal enveloping algebra, restricted case

Universal property

- B an associative superalgebra,
- $j_A : A \rightarrow B$ an even morphism of associative superalgebras,
- $j_L : L \rightarrow B$ an even morphism of restricted Lie superalgebras,

satisfying for all $a \in A$ and all $x \in L$ the conditions

$$j_L(ax) = j_A(a)j_L(x); \quad \text{and} \quad j_A(\rho(x)(a)) = j_L(x)j_A(a) - (-1)^{|a||x|}j_A(a)j_L(x).$$

Then, there exists a unique morphism of associative superalgebras

$$\psi : U_p(A, L) \rightarrow B \text{ such that } \psi \circ i_L = j_L \quad \text{and} \quad \psi \circ i_A = j_A.$$

The universal enveloping algebra, restricted case

Universal property

- B an associative superalgebra,
- $j_A : A \rightarrow B$ an even morphism of associative superalgebras,
- $j_L : L \rightarrow B$ an even morphism of restricted Lie superalgebras,

satisfying for all $a \in A$ and all $x \in L$ the conditions

$$j_L(ax) = j_A(a)j_L(x); \quad \text{and} \quad j_A(\rho(x)(a)) = j_L(x)j_A(a) - (-1)^{|a||x|}j_A(a)j_L(x).$$

Then, there exists a unique morphism of associative superalgebras

$$\psi : U_p(A, L) \rightarrow B \text{ such that } \psi \circ i_L = j_L \quad \text{and} \quad \psi \circ i_A = j_A.$$

$$\begin{array}{ccccc} A \oplus L & \xrightarrow{\varphi} & & & B \\ & \searrow i & & \nearrow \tilde{\varphi} & \\ & U^+(A \rtimes L) & & & \\ & \downarrow \pi_1 & & \nearrow \tilde{\psi} & \\ & & U(A, L) & \xrightarrow{\pi_2} & U_p(A, L) \end{array}$$

Thank you for your attention

Main reference:

S. Bouarroudj, Q. Ehret, A. Makhlouf, N. Shyntas

*The Superization of Hochschild's Lemma and Restricted Lie-Rinehart
Superalgebras, arXiv:2511.18372.*