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Outline of the talk

@ Lie-Rinehart (super)algebras

© Restricted Lie algebras, restricted Lie-Rinehart algebras

© The superization of Hochschild’s Lemma

© Modules, semi-direct product, universal enveloping algebra
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Lie-Rinehart algebras: definition

J. Herz (1953) - “pseudo-algebre de Lie”;
R. Palais (1961) - “d-Lie ring";

G. Rinehart (1963) - “(R, A)-Lie algebras”;

Differential form on general commutative algebras, Trans. AMS 108

J. Huebschmann (1990) - “Lie-Rinehart algebra”. Johannes Huebschmann
Poisson cohomology and quantization, J. Reine Angew. Math. 408
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G. Rinehart (1963) - “(R, A)-Lie algebras’;

Differential form on general commutative algebras, Trans. AMS 108

k \
J. Huebschmann (1990) - “Lie-Rinehart algebra”. Johannes Huebschmann
Poisson cohomology and quantization, J. Reine Angew. Math. 408

Definition
A Lie-Rinehart algebra is a triple (A, L, p), where
@ A is an associative commutative algebra;
o (L,[—,—]) is a Lie algebra that is also an A-module;

@ p: L — Der(A) is an A-linear Lie algebras morphism satisfying the Leibniz
identity

[x,ay] = a[x,y] + p(x)(a)y, Va€cA, Vx,y €L
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Lie-Rinehart algebras: examples

@ Let A be an associative commutative algebra. Then, Der(A) is a Lie algebra with
the commutator bracket and the triple (A, Der(A),id) is a Lie-Rinehart algebra.
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Lie-Rinehart algebras: examples

@ Let A be an associative commutative algebra. Then, Der(A) is a Lie algebra with
the commutator bracket and the triple (A, Der(A),id) is a Lie-Rinehart algebra.

@ (Huebschmann) Let (A, {—, —}) be a Poisson algebra with unit. Let Q(A) be its
module of Kahler differentials:

Q(A) = {da, ac A, d(a+ b)=da+ db, d(ab) = dab+ adb, d1 = 0}.

[xdu, ydv] := x{u, y}dv + y{x, v}idu + xyd{u, v}, Vx,y,u,vEA. J

p(xdu) = x{u,—}. J

Then (A, Q(A), p) is a Lie-Rinehart algebra.

@ Universal enveloping algebra (Rinehart 1963, Huebschmann 1990).

U(A, L, p) = UN(Ax L)/ < i(a)i(b+x) — i(a(b+x)), a,be A, xeL>
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Lie-Rinehart superalgebras

S. Chemla (Manuscripta Math. 87, 1995),
C. Roger (Bull. Soc. Roy. Sci. Liege, 89, 2020),
QE.- A. Makhlouf (Commun. Math. 30, 2022),

T. Lamkin (Algebr. Represent. Theor. 28, 2025)
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Lie-Rinehart superalgebras

S. Chemla (Manuscripta Math. 87, 1995),
C. Roger (Bull. Soc. Roy. Sci. Liege, 89, 2020),
QE.- A. Makhlouf (Commun. Math. 30, 2022),

T. Lamkin (Algebr. Represent. Theor. 28, 2025)

Definition
A Lie-Rinehart superalgebra is a triple (A, L, p), where
@ A is an associative supercommutative superalgebra;
° (L, [—, —]) is a Lie superalgebra that is also an A-module;

@ p: L — Der(A) is an A-linear Lie superalgebras morphism satisfying the
Leibniz identity

[x,ay] = (—1)|a”x‘a[x7 y] + p(x)(a)y, VaeA, Vx,y € L.
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Restricted Lie algebras

From now on, K is a field of characteristic p > 3.
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Restricted Lie algebras

From now on, K is a field of characteristic p > 3.

Definition (Jacobson, Restricted Lie algebras of characteristic p, Trans. AMS 50, 1941)

A restricted Lie algebra is a Lie algebra L equipped with a map (=)' : L — L
satisfying for all x,y € L and for all A € K:

() ()\x)[”] — \Pxlel.

p terms
[P]
o I:vap] = [[ o [X7y]7y]7' o ay];
p—1
Q (x+y)lPl = xlPl ¢ Il 4 ZS;(XJ).
i=1 Nathan Jacobson (1910-1999)

with isi(x, y) the coefficient of Z'~* in ad@x_jy(x). Such a map (=) : L — L is called
p-map.
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From now on, K is a field of characteristic p > 3.

Definition (Jacobson, Restricted Lie algebras of characteristic p, Trans. AMS 50, 1941)

A restricted Lie algebra is a Lie algebra L equipped with a map (=)' : L — L
satisfying for all x,y € L and for all A € K:

() ()\x)[”] = \Pxlel.

p terms
[Pl
e I:vap] = [[ [X7y]7y]7“' ’.y];
p—1
Q (x+y)lPl = xlPl ¢ Il 4 ZS;(XJ),
i=1 Nathan Jacobson (1910-1999)

with isi(x, y) the coefficient of Z'~* in ad@;jy(x). Such a map (=) : L — L is called
p-map.

Example: any associative algebra A with [a, b] = ab — ba and alPl = P Va, b e A.
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Restricted Lie algebras

Example

For any associative algebra A , Der(A) is a restricted Lie algebra with the
commutator and the p-th power.
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Restricted Lie algebras

Example

For any associative algebra A , Der(A) is a restricted Lie algebra with the
commutator and the p-th power.

Theorem (Jacobson)

Let L be a Lie algebra. Let (ej)jes be a basis of L, and let the elements f; € L be
such that (ade, )P = ads. Then, there exists exactly one p-mapping (—)P: L — L
such that

ej[p]:ﬂ- for all j € J.
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Towards restricted Lie-Rinehart algebras

@ Earlier instances go back to Hochschild (1955).
Simple algebras with purely inseparable splitting fields of exponent 1, Trans. AMS 79.
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Hochschild's Lemma

U : associative algebra over the field of integers modulo p

V C U : commutative subalgebra

D,(w) = uw — wu, Yu,w € U.
Then, for all u € U such that D,(V) C V, we have

(vu)? = vPuP + Db N (v)u, Vv € V.
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Towards restricted Lie-Rinehart algebras

@ Earlier instances go back to Hochschild (1955).
Simple algebras with purely inseparable splitting fields of exponent 1, Trans. AMS 79.

Hochschild's Lemma
U : associative algebra over the field of integers modulo p
V C U : commutative subalgebra
D,(w) = uw — wu, Yu,w € U.

Then, for all u € U such that D,(V) C V, we have

(vu)? = vPuP + Db N (v)u, Vv € V.

Let (A, L, p) be a Lie-Rinehart algebra. Applying the Lemma with U the universal
enveloping algebra of (A, L, p), and V = A, we obtain

(ax)? = aPxP + p(ax)p_l(a)x7 Va€ A, Vx e L. J

@ "Modern version”, P. Schauenburg (2016).

Let (A, L, p) be a Lie-Rinehart algebra and let (¢, M) be a Lie-Rinehart module.
Then, we have

$(ax)” = 8 p(x)" + p(ax)""" (a)(x).
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Restricted Lie-Rinehart algebra: definition

e D. Rumynin, Duality for Hopf algebroids, J. Algebra 223 (2000);

o |. Dokas, Cohomology of restricted Lie-Rinehart algebras and the Brauer
group, Adv. Math. 231 (2012).
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Restricted Lie-Rinehart algebra: definition

e D. Rumynin, Duality for Hopf algebroids, J. Algebra 223 (2000);

o |. Dokas, Cohomology of restricted Lie-Rinehart algebras and the Brauer
group, Adv. Math. 231 (2012).

A Lie-Rinehart algebra (A, L, p) is called restricted if L is a restricted with a
p-map (f)[p] : L — L, and if moreover, we have

(ax)lPl = aPxPl 4 p(ax)P~Y(a)x, Vae A, Vxe L (1)

Our leading example (Dokas). Let A be an associative commutative algebra.
Then, (A, Der(A),id) is a restricted Lie-Rinehart algebra.

Proof: Hochschild's Lemma.
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Towards the superization

@ Goal: to define the notion of restricted Lie-Rinehart superalgebra;
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Towards the superization

@ Goal: to define the notion of restricted Lie-Rinehart superalgebra;

@ For any associative supercommutative superalgebra A, the triple
(A, Der(A),id) must provide an example.

o lIdea: to prove a super-version of the Hochschild’s Lemma.

o Strategy: generalize the proof of Schauenburg to the supercase.
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Superization of Hochschild's Lemma

Theorem (Bouarroudj, E., Makhlouf, Shyntas)

Let (A, L, p) be a Lie-Rinehart superalgebra over a field K of characteristic p > 3 and let

(¢, M) be a Lie-Rinehart module. Then, we have

P(ax)P = aPp(x)” + p(ax)P~"(a)p(x), Va € A, Vx € Lg;
$(ax)? = ad(x)* + p(ax)** " (a)(x)
+ Z Nip(ax)(a)p(ax)* 27 (a)p(x)?, Va € A, Vx € Ls;

i=0
¢(ax)2p =0,

=i

#(ax)” = a(p(x)(2))" " é(x),

where the coefficients \; are given by
2(-1)?

A=1{2(-1)7

p—1

(-1)"%

Va € Az, Vx € Lg;
Va € A;, Vx € Ly,

if iiseven, 0<i<p-—1;
if iisodd, 1 <i<p-—1;

ifi=p—1.

)

3)

(4)
(5)

(6)

11/22



Superization of Hochschild's Lemma

Elements of the proof.

Consider the Zj-graded ring V = Z[xg, x1, X2, - - ], such that |x; 11| = |x;| + |],
where ¢ is the derivation of V defined by d(x;) = xiy1.
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Superization of Hochschild's Lemma
Elements of the proof.

Consider the Zj-graded ring V = Z[xg, x1, X2, - - ], such that |x; 11| = |x;| + |],
where ¢ is the derivation of V defined by d(x;) = xiy1.

Key point: study the polynomials I, ; defined by I'; ;1 = xp and

x00(Mk,1), j=1
M1y = § x00(Tky) + (=1)PNMei—lxgly g, j=2,--+ Kk
Xol k ks j=k+1.

Proposition (Case xy even, ¢ odd)

M2 =0 modp, forall 3<j<2p—1.

Let (A, L, p) be a Lie-Rinehart superalgebra. Applying a well-chosen map
f:V — Agives the result. O
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Restricted Lie-Rinehart superalgebras

Definition (Restricted Lie superalgebra)

A restricted Lie superalgebra is a Lie superalgebra L = L5 @ Lj such that
© The even part Lg is a restricted Lie algebra;
@ The odd part Lj is a Lie Lz-module;

p terms

—
Q [x,y["]] =[[...[x,¥],y],--»¥], Vx € L3, y € Lg.
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Restricted Lie-Rinehart superalgebras

Definition (Restricted Lie superalgebra)

A restricted Lie superalgebra is a Lie superalgebra L = L5 @ Lj such that
© The even part Lg is a restricted Lie algebra;
@ The odd part Lj is a Lie Lz-module;

p terms

—
Q [x,y["]] =[[...[x,¥],y],--»¥], Vx € L3, y € Lg.
We can define a map (-)?7 : L7 — Lg by

1
X2 — (X2)["], with x? = Sbx], x € Ly

Examples.
@ associative superalgebras;

@ Der(A) with A associative superalgebra.
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Restricted Lie-Rinehart superalgebras

A Lie-Rinehart superalgebra (A, L, p) is called restricted if the Lie superalgebra L
is restricted and if in addition, we have

(ax)lPl = aPxlPl 1 p(ax)P~1(a)x, Va € Aj, Vx € Lg; (7)
(ax)[2P] — g2pxl2pl | p(ax)?P~1(a)x
p—1
+ Z Aip(ax)'(a)p(ax)?P~2 7 (a)x>, Va € A, Vx € Lg; (8)
i=0
(ax)i2Pl = 0, Va € Ay, Vx € Lg; (9)
(ax)IP! = a(p(x)(2))" ', Va€Ap, Vx el (10)

where the coefficients \; are given by

2(—1)z if iiseven, 0<i<p—1;
A={2(-1)F ifiisodd, 1<i<p-—1;
(1)  ifi=p—1.
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Restricted Lie-Rinehart superalgebras

Example

Let A be an associative supercommutative superalgebra. Then, (A, Der(A),id) is a
restricted Lie-Rinehart superalgebra.
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Example

Let A be an associative supercommutative superalgebra. Then, (A, Der(A),id) is a
restricted Lie-Rinehart superalgebra.

Proof. Apply the superized Hochschild's Lemma to the representation (id, A).
Case p = 3. Let a € A and D € Der(A);.

(aD)6 =a°D% + (aD)S(a)D + 25)4D3(a)D(a)D2 + 235D4(a)D2.

15/22



Restricted Lie-Rinehart superalgebras

Example

Let A be an associative supercommutative superalgebra. Then, (A, Der(A),id) is a
restricted Lie-Rinehart superalgebra.

Proof. Apply the superized Hochschild's Lemma to the representation (id, A).
Case p = 3. Let a € A and D € Der(A);.

(aD)® = a°D° + (aD)(a)D + 2a*D*(a)D(a)D* + 2a° D*(a) D*.
However, one can show that
2a(aD)*(a)D? = a*D?(a)’D* + 2a*D(a) D*(a) D* + 2a°D*(a) D?;
2(aD)(a)(aD)*(a)D? = a*D*(a)D(a)D?;
2(aD)?(a)’D* = 2a*D*(a)’D".

15/22



Restricted Lie-Rinehart superalgebras

Example

Let A be an associative supercommutative superalgebra. Then, (A, Der(A),id) is a
restricted Lie-Rinehart superalgebra.

Proof. Apply the superized Hochschild's Lemma to the representation (id, A).
Case p = 3. Let a € A and D € Der(A);.

(aD)® = a°D° + (aD)*(a)D + 2a*D*(a)D(a) D* + 2a°D*(a) D*.
However, one can show that
2a(aD)*(a)D? = a*D?(a)’D* + 2a*D(a) D*(a) D* + 2a°D*(a) D?;
2(aD)(a)(aD)*(a)D? = a*D*(a)D(a)D?;
2(aD)?(a)’D* = 2a*D*(a)’D".
It follows that

(aD)6 = a%D°% + (aD)5(a)D + 2a(aD)4(a)D2 + 2(aD)(a)(aD)3(a)D2 + 2(aD)2(a)2D2. J

We therefore recover Eq. (8).
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Modules and representations

Let (A, L, p) be a restricted Lie-Rinehart superalgebra. A representation of
(A, L, p) is an A-module V = V5 @ Vj together with a A-linear morphism of
restricted Lie superalgebras ¢ : L — End(V) satisfying:

o(x)(av) = (=) ag(x)(v) + p(x)(a)v, Vx €L, Yac A VYveV,
P(ax)PH(av) = aPd(x)PH(v) + p(ax)" " (a)v, Vx € Lg, Va€ As, Vv eV,
$(ax)* " (av) = a*(x)*7H(v) + p(ax)* 7 (a)v

p—1
+3 Nip(ax)(a)p(ax)?P T (@)e(x)(v),  Va€ Ag, VxELi Vv EV,
i=0

where the coefficients \; are defined as before. Such a pair (¢, V) is called a
restricted Lie-Rinehart module.
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Semi-direct product

Proposition

Let (L7 [—, -], (—)[p|2p]) be a restricted Lie superalgebra and let (¢, V) be a restricted

representation. Then, L x V is a restricted Lie superalgebra with the bracket
[+ ), (v + w)] =[xyl + 60 (w) = ()" Me(y)(v), VxyelL Vv,we
and with a p|2p-map (—)PI?Px : [ % V — (L x V); satisfying
(e + v = &l + g(e)" (),

where (e;); forms a basis of Lj and (v;); a basis of V5.

Vv
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Semi-direct product

Proposition

Let (L7 [—, -], (—)[p|2p]) be a restricted Lie superalgebra and let (¢, V) be a restricted
representation. Then, L x V is a restricted Lie superalgebra with the bracket

[+ ), (v + w)] = Iyl + o()(w) = ()" Me(y)(v), Vxy el Vv,weV
and with a p|2p-map (—)PI?Px : [ % V — (L x V); satisfying

(-4 )P = e+ 6 (),

where (e;)i forms a basis of Lg and (v;); a basis of V5.

Theorem

Let (A, L, p) be a restricted Lie superalgebra and let (¢, V') a representation. Suppose
that the center of the restricted Lie superalgebra L x V is trivial. Then, (A,Lx V,p) is a
restricted Lie-Rinehart superalgebra, with p(x + v) = p(x), V x+v € L x V.
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The universal enveloping algebra, ordinary case

Let (A, L, p) be a Lie-Rinehart superalgebra. The superspace A® L, is a Lie
superalgebra with the bracket

[a+x, b+ y] =[x, y] + p(x)(b) — (1) p(y)(a), Va+x,b+yecAaL

We note the resulting Lie superalgebra by A x L.
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The universal enveloping algebra, ordinary case

Let (A, L, p) be a Lie-Rinehart superalgebra. The superspace A® L, is a Lie
superalgebra with the bracket

[a+x,b+y] = [x,y] + p(x)(b) = (=1)Wp(y)(a), Va+x,b+yecAaL
We note the resulting Lie superalgebra by A x L.

Denote by UT(A x L) the subspace of U(A x L) spanned by i(A x L) where
it AxL— U(Ax L) is the (even) injection.

The universal enveloping algebra of the Lie-Rinehart superalgebra (A, L, p) is
defined by
U(A, L) = Ut(Ax L)/J,

where

J= <i(a)i(b+x) —i(a(b+x)), a,be A, x € L>.
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The universal enveloping algebra, restricted case

Let (A, L, p) be a restricted Lie-Rinehart superalgebra. Recall that
U(A, L) = UT(Ax L)/J, where

J= <i(a)i(b +x) —i(a(b+x)), a,bc A, x € L>.
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The universal enveloping algebra, restricted case

Let (A, L, p) be a restricted Lie-Rinehart superalgebra. Recall that
U(A, L) = UT(Ax L)/J, where

J= <i(a)i(b +x) —i(a(b+x)), a,bc A, x € L>.
Consider

o m : UT(Ax L) — U(A L) = U (A x L)/J the projection;
@ 1p:A— U(A,L) and ¢y : L — U(A, L) the natural maps;

We define the restricted universal enveloping algebra of (A, L, p) by

Up(A, L) == U(A, L) /{m1 0 i(xIPl) — (11 0 i(x))P, x € Lg).
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J= <i(a)i(b +x) —i(a(b+x)), a,bc A, x € L>.
Consider

o m : UT(Ax L) — U(A L) = U (A x L)/J the projection;
@ 1p:A— U(A,L) and ¢y : L — U(A, L) the natural maps;

We define the restricted universal enveloping algebra of (A, L, p) by
Up(A, L) == U(A, L) /{m1 0 i(xIPl) — (11 0 i(x))P, x € Lg).

e m : U(A, L) — Uy(A, L) the projection;
@ jp=mp0tLpand ip = m 0yy.

For all a € A and all x € L, we have

ia(2)ie(x) = it(ax)i ia(p(x)(a))= i(x)ia(a) = (=1)"*Mia(a)ic (x).

—— _ = —=




The universal enveloping algebra, restricted case

Up(A, L) := U(A, L) /{my 0 i(xIPl) — (m1 0 i(x))?, x € Lg). J
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The universal enveloping algebra, restricted case

Up(A, L) := U(A, L)/{m1 0 i(xP)) = (m1 0 i(x))P, x € Lg).
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The universal enveloping algebra, restricted case

Universal property
@ B an associative superalgebra,
@ ja : A — B an even morphism of associative superalgebras,
@ ji : L — B an even morphism of restricted Lie superalgebras,
satisfying for all a € A and all x € L the conditions

ju(ax) = ja(a)jc(x); and ja(p(x)(a))=jr(x)ja(a) — (1) ja(a)ji(x).

Then, there exists a unique morphism of associative superalgebras
¥ : Up(A,L) — B such that o iy =j; and 1 ois = ja.
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The universal enveloping algebra, restricted case

Universal property
@ B an associative superalgebra,
@ ja : A — B an even morphism of associative superalgebras,
@ ji : L — B an even morphism of restricted Lie superalgebras,

satisfying for all a € A and all x € L the conditions
Ji(@x) = ja(a)j(x); and ja(p(x)(a))=jc(x)ja(a) = (1)1 ja(a)je(x).

Then, there exists a unique morphism of associative superalgebras
¥ : Up(A,L) — B such that o iy =j; and 1 oia = ja.

Ao L - B
\ /LT
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Thank you for your attention

Main reference:
S. Bouarroudj, Q. Ehret, A. Makhlouf, N. Shyntas

The Superization of Hochschild’s Lemma and Restricted Lie-Rinehart
Superalgebras, arXiv:2511.18372.
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